برازش خطی چندمتغیره

***** برازش خطی چندگانه (Multiple Linear Regression) برای پیشبینی یک متغیر وابسته (y) که به صورت خطی با بیش از یک متغیر مستقل (x₁, x₂, ..., x_n) مرتبط است به کار می رود. $h_{\theta}(x) = \theta_{0} + \theta_{1}x_{1} + \theta_{2}x_{2} + \dots + \theta_{n}x_{n} = \theta^{T}X$ $h_{\theta}(x) = 0 + \theta_{1}x_{1} + \theta_{2}x_{2} + \dots + \theta_{n}x_{n} = \theta^{T}X$ $x_{0} = 1$ $x_{0} = 1$

Multiple features

viuitipie	teatures				Size (feet ²)	Price (\$1000)
					x	y
Notation:				2104	460	
n= number of features					1416	232
$x^{(i)}$ = input (features) of i^{in} training example.					1534	315
$x_j^{(i)}$:	= value of feat	urejin i th tra	ining example.		852	178
x ₁	X ₂	<i>x</i> ₃	x_4			
ize (feet ²)	Number of	Number of	Age of home	Price (\$1000)		

Size (feet ²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)	$h_0(\cdot)$
2104	5	1	45	460	100/
1416	3	2	40	232	
1534	3	2	30	315	
852	2	1	36	178	
				·	

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Multiple features

Hypothesis Previously: $h_{\theta}(x) = \theta_0 + \theta_1 x$

Multivariate linear regression: $h_{\theta}(x) = \theta_{0} + \theta_{1}x_{1} + \theta_{2}x_{2} + \dots + \theta_{n}x_{n}$

		x ₁	x ₂	<i>x</i> ₃	x_4	У	$h_{\Theta}(X) = \Theta^T X$
		Size (feet ²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)	$\Theta = \left[\Theta_{3},\Theta_{1},\cdots,\Theta_{n}\right]^{\top}$
		2104	5	1	45	460	
(i)		1416	3	2	40	232	$\Delta = (\chi_0 g^{\chi}, 2 \cdot J_n)$
X_	No.	1534	3	2	30	315	
	X1	852	2	1	36	178	1
	Xali		•••				ا +N عرى

 $h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \theta_4 x_4$

Gradient descent for multiple variables

Hypothesis: $h_{\theta}(x) = \theta^T x = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$ Parameters: $\theta_0, \theta_1, \dots, \theta_n$

Cost function: $J(\theta_0, \theta_1, \dots, \theta_n) = \frac{1}{2m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})^2$

Gradient descent:

Gradient Descent New algorithm $(n \ge 1)$: Previously (n=1): Repeat{ Repeat { $\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})$ $\theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)}$ $\frac{\partial}{\partial \theta_{\Omega}} J(\theta)$ simultaneously update θ_j for $j = 0, \dots, n$) } $\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_0^{(i)} > 1$ $\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x^{(i)}$ $\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_\theta(x^{(i)}) - y^{(i)}) x_1^{(i)}$ (simultaneously update θ_0, θ_1) } $\theta_2 := \theta_2 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_2^{(i)}$ $\underline{\theta} := \underline{\theta} - \propto \underline{\lambda}$

Feature Scaling

Idea: Make sure features are on a similar scale.

Mean normalization

Replace x_i with $x_i - \mu_i$ to make features have approximately zero mean (Do not apply to $x_0 = 1$).

E.g.
$$x_{1} = \frac{size - 1000}{2000}$$

$$x_{2} = \frac{\#bedrooms - 2}{5}$$

$$-0.5 \le x_{1} \le 0.5, -0.5 \le x_{2} \le 0.5$$

$$x_{1} \leftarrow \frac{x_{1} - \mu_{1}}{6} \quad \text{of } x_{1}$$

$$x_{2} \leftarrow \frac{x_{2} - \mu_{1}}{5}$$

$$x_{3} \leftarrow \frac{x_{1} - \mu_{2}}{5} \quad \text{set} \quad x_{2} \leftarrow \frac{x_{2} - \mu_{1}}{5}$$

$$x_{2} \leftarrow \frac{x_{2} - \mu_{1}}{5}$$

$$x_{3} \leftarrow \frac{x_{1} - \mu_{2}}{5} \quad \text{set} \quad x_{2} \leftarrow \frac{x_{2} - \mu_{1}}{5}$$

تغيير مقياس متغيرها

min-max normalization

$$x'=rac{x-\min(x)}{\max(x)-\min(x)}$$

Mean normalization

$$x = rac{x - mean(x)}{max(x) - min(x)}$$

Gradient descent

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

- "Debugging": How to make sure gradient descent is working correctly.
- How to choose learning rate α .

Making sure gradient descent is working correctly.

Example automatic convergence test:

Declare convergence if $J(\theta)$ decreases by less than 10^{-3} in one iteration.

Making sure gradient descent is working correctly.

Making sure gradient descent is working correctly.

- For sufficiently small lpha, J(heta) should decrease on every iteration.
- But if lpha is too small, gradient descent can be slow to converge.

Summary:

- If α is too small: slow convergence.
- If α is too large: $J(\theta)$ may not decrease on every iteration; may not converge. (Slow converge also possille.)

To choose α , try

روش آماری Normal Equation

•

$$\frac{\partial J(\theta)}{\partial \theta_j} = 0 \text{ (for every j)} \quad \longrightarrow \quad \Theta_0, \dots, \Theta_n$$

$$J = 0 \dots N$$

۱.

$m \, {\rm training} \, {\rm examples}$, $n \, {\rm features}$.

Gradient Descent

- Need to choose α .
- Needs many iterations.
- Works well even when n is large.

$$h = 10^{6}$$

* معام رو ور الازم **Normal Equatio**

- No need to choose α .
- Don't need to iterate.
- Need to compute $(X^T X)^{-1} \rightarrow (X^n)$

Slow if
$$n$$
 is very large

برازش چندجمله

 برازش چندجملهای (Polynomial Regression) برای پیشبینی متغیر وابسته ای که به صورت چندجمله ای با متغیرهای مستقل مرتبط است به کار می رود.

برازش چندجملهای: پیشبینی قیمت خانه

مثال

 $h_{\theta}(x) = \theta_0 + \theta_1(size)^1 + \theta_2(size)^2 + \theta_3(size)^3$

 $h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3$

٩

Stochastic Gradient Descent vs Batch Gradient Descent

Batch Gradient Descent

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

 $\theta_{t+1} = \theta_t - \alpha J'(\theta)$

Need to compute for all data, if you have sample size, m = 1millionVery slow to update θ

Stochastic Gradient Descent $cost\left(\theta,(x^{(i)},y^{(i)})\right)$ $=\frac{1}{2}(h_{\theta}(x^{(i)})-y^{(i)})^{2}$ 1. Random Shuffle Data 2. Repeat { for i = 1, ... , m { θ_{t+1} $\theta_{t+1} = \theta_t - \alpha \frac{\partial}{\partial \theta_t} cost(\theta, (x^{(i)}, y^{(i)}))$ } Update θ using only one data point. Faster , Faster , Jung Copt Jon & a day Opt

Mini-batch Gradient Descent

اگر تعداد نمونه ها (m)، خیلی بزرگ باشد، به چندین mini-batch تقسیم می شوند و در هر مرحله یکی از mini-batchها ر به هنگام رسانی پارامترها استفاده می شود. مَلاَ 25 يونه B.S: 32, 64, 128, ... m_{B=} X(1) 1epoch Random shuffle mini-batch p,

Mini-batch Gradient Descent

$$\frac{m}{t} = m_B$$

 $t = 1 \rightarrow Stochastic$

 $t = m \rightarrow Batch$

 $t = 64, 128, 256, 512 \rightarrow Mini - batch$

for every t:

```
Optimize based on X^{(1:t)}
```

Compute cost J

Update θ

(128)

Computational resource per epoch

Stochastic

Mini-batch

Epochs required to find good W, b values

Batch Gradient Descent

Stochastic Gradient Descent

Too long per iteration especially when *m* is very large

Lose speedup from vectorization (Inefficient implementation)

Newton Method

الرفت علراني ليوس - راهول مي والدر - ار حداكات

ولى ¹-4 راى «رز حرب في المرز المرز المرب في المردى المرد الم

Fisher Scoring

Newton Method vs Gradient Descent

Logistic Regression

Introduction

- Logistic regression is a widely used discriminative classification model *p*(*y* | **x**; *θ*).
- where $\mathbf{x} \in \mathbb{R}^{D}$ is a fixed-dimensional input vector, $y \in \{1, ..., C\}$ is the class label.
- If C = 2, this is known as binary logistic regression.
- if C > 2, it is known as multinomial logistic regression, or alternatively, multiclass logistic regression.

Classification

Email: Spam / Not Spam? Online Transactions: Fraudulent (Yes / No)? Tumor: Malignant / Benign ?

 $y \in \{0, 1\}$ 1: "Positive Class" (e.g., benign tumor) 1: "Positive Class" (e.g., malignant tumor)

Classification:
$$y = 0$$
 or 1 $h_{\Theta}(X) = \Theta^T X$

$$h_{\theta}(x)$$
 can be > 1 or < 0

Logistic Regression:

$$0 \le h_{\theta}(x) \le 1$$

$$h_{\Theta}(X) = P(y = 1 | X)$$

Logistic Regression Model

We want $0 \le h_{\theta}(x) \le 1$ $h_{\theta}(x) = \sigma'(\theta^T x)$ $\sigma'(z) = \frac{1}{1 + e^{-z}}$ $H_{\Theta}(x) = \frac{1}{1 + e^{-\Theta^T x}}$

$\{\chi^{(i)}, \chi^{(i)}\}$ $\chi^{(i)} \{\varepsilon_{1}, 0, 1\}$ Interpretation of Hypothesis Output $h_{\theta}(x)$ = estimated probability that y = 1 conditioned on input x Example: If $x = \begin{bmatrix} x_0 \\ x_1 \end{bmatrix} = \begin{bmatrix} 1 \\ \text{tumorSize} \end{bmatrix}$ $h_{\Theta}(x) = 6' (\Theta' x')$ $h_{\theta}(x) = 0.7$ $h_{\theta}(x) = 0.7 \longrightarrow 0.7$ $h_{\partial}(X) = P(Y = 1 | X)$ $1 - h_{\Theta}(X) = p(\gamma = \circ | X)$ $P(y = 0 | x; \theta) + P(y = 1 | x; \theta) = 1$ $P(y = 0 | x; \theta) = 1 - P(y = 1 | x; \theta)$ 2 test 1+ e-0'x + th 6" $h \ominus (X) = 0.3 \longrightarrow \pi^{-1}$

Logistic regression

$$h_{\theta}(x) = g(\theta^T x)$$
$$g(z) = \frac{1}{1 + e^{-z}}$$

Suppose predict " $y \equiv 1$ " if $h_{\theta}(x) \ge 0.5$

predict "y = 0" if $h_{\theta}(x) < 0.5$ th = 0.5 : $\int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \int_{\pi$

 $\begin{array}{l} \Theta^T X \geqslant \circ & \longrightarrow y = 1 \\ \Theta^T X \swarrow \circ & \longrightarrow y = \circ \end{array}$

රෙල් ද විය Non-linear decision boundaries

Transform input features in suitable way

 $\phi(x_1, x_2) = [1, x_1^2, x_2^2] \times \mathcal{M}_{1, \mathcal{M}_{2}}, \mathcal{M}_{2, \mathcal{M}_{2}}, \mathcal{M}_{2},$

 $h_{\Theta}(X) = \mathcal{O}(P(X))$ $P_{\Theta}(X) = \partial_{\sigma} \mathcal{X}_{\sigma} + \partial_{\tau} \mathcal{X}_{\tau} + \partial_{z} \mathcal{X}_{\tau} + \partial_{$

How to choose parameters θ ?

Cost function

Convex

Not Convex

Logistic regression cost function

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \operatorname{Cost}(h_{\theta}(x^{(i)}), y^{(i)})$$
$$\operatorname{Cost}(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

Note: y = 0 or 1 always

$$Cost(h_{\theta}(X), y) = -y \log(h_{\theta}(X)) - (1 - y) \log(1 - h_{\theta}(X))$$
$$h_{\theta}(X) = \frac{1}{1 + e^{-\Theta X}}$$

Logistic regression cost function

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \operatorname{Cost}(h_{\theta}(x^{(i)}), y^{(i)})$$
$$= \int_{m}^{1} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (\underbrace{1 - h_{\theta}(x^{(i)})}_{p(y=\circ|x)})\right]$$

Gradient Descent

$$J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)})) \right]$$

θ

Want $\min_{\theta} J(\theta)$:

Repeat $\{$

$$\frac{\partial}{\partial \theta_j} \sigma(\theta^T x)?$$

$$\frac{\partial}{\partial z}\sigma(z) = \sigma(z)[1-z]$$

$$\frac{\partial}{\partial \theta_j} \sigma(\theta^T x) = \frac{\partial}{\partial z} \sigma(z) \cdot \frac{\partial z}{\partial \theta_j}$$

Chain rule!

$$\frac{\partial}{\partial \theta_j} \sigma(\theta^T x) = \sigma(\theta^T x) [1 - \sigma(\theta^T x)] x_j \qquad \text{Plug and chug}$$

Gradient Descent

$$J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)})) \right]$$

Algorithm looks identical to linear regression!

logistic regression (Probabilistic view)

Finding the Maximum Likelihood (ML) solution is equivalent to minimizing the cross entropy cost function

log_likelihood: ", y'' logha(x'')+(1-y')log(1-h(x')) $P(\hat{y}|X) = (h_0(x^{(i)})^{y^{(i)}} + (i - h_0(x^{(i)})^{(i-y^{i})})$ $\log_{\Theta}(\tilde{y}'|\tilde{x}') = (y'') \log_{\Theta}(\chi^{(i)}) + ('-y'') \log(1-h_{\Theta}(\chi^{(i)}))$ P(<u>J</u> 1<u>×</u>) $= \pi P_{\partial}(y^{c'}|x^{c'})$ malogP(Y|X) man LogPa(y'X')

Multiclass classification

Email foldering/tagging: Work, Friends, Family, Hobby

Medical diagrams: Not ill, Cold, Flu

Weather: Sunny, Cloudy, Rain, Snow

$$y \in \{0, 1, 2, 3\}$$

 $\chi_{+e_1} \to 2 \dots 5$

/

Binary classification: Multi-class classification: **x**₂ **X**₂ \mathbf{X}_1 \mathbf{X}_1

Sottman regression; (mul k) 2 (logistic -regrasson مم ماقته (*n⁽*), y⁽ⁱ⁾) J''e{ i=1...m 1,2,.,k1 $p(y=1|x;\theta)$ MNIST = 10 $P(y=2|x;\theta) = P(y=k|x;\theta)$ =) horx $p(y = k | \underline{x})$ OT TX $\sum_{k=0}^{k} h_{\Theta}(x)$ $h_{\mathcal{O}}(X)$ O À LA

Cross entropy cost f indian: $1(\bar{y}_{2}, \bar{y}_{1}) = 1$ $1(\bar{y}_{2}, \bar{y}_{2}) = 0$ $J(\Theta) = -\left[\sum_{i=1}^{m} \sum_{k=1}^{k} 1\left[y^{(i)} \cdot k\right] \log \frac{e^{\mu \rho} \left(\Theta \cdot \chi^{(i)}\right)}{\sum_{i=1}^{k} e^{\mu \rho} \left(\Theta \cdot \chi^{(i)}\right)}\right]$ $\begin{array}{c} k = 4 \\ X_{+2} + \longrightarrow h_{\Theta}(X_{1-1}) = \begin{bmatrix} 0.8 \\ 0.1 \\ 9705 \\ 0705 \end{bmatrix} \longrightarrow \begin{array}{c} Y_{+3+} = 1 \\ F(y_1 \times , \Theta) \\ \sim Categoricat(P_1, P_2, \dots, P_k) \\ P_k = 1 - \sum_{i=1}^{k-1} P_i \end{array}$

Regularization

Regularization

A fundamental problem is that the algorithm tries to pick parameters that minimize loss on the training set, but this may not result in a model that has low loss on future data. This is called **overfitting**.

example

suppose we want to predict the probability of heads when tossing a coin. We toss it N = 3 times and observe 3 heads. The MLE is $\theta_{mle} = N_1/(N_0 + N1) = 3/(3 + 0) = 1$. However, if we use Ber(y $|\theta_{mle}|$) as our model, we will predict that all future coin tosses will also be heads, which seems rather unlikely.

Regularization

• The core of the problem is that the model has enough parameters to perfectly fit the observed training data, so it can **perfectly match** the empirical distribution.

• However, in most cases the empirical distribution is not the same as the true distribution, so putting all the probability mass on the observed set of *N* examples will not leave over any probability for novel data in the future. That is, the model may not generalize.

Solution

The main solution to overfitting is to use regularization, which means to add a penalty term to the Cost function. Thus we optimize an objective of the form

$$\mathcal{L}(\boldsymbol{\theta}; \lambda) = \left[\frac{1}{M} \sum_{i=1}^{M} \ell(\mathbf{y}_i, \boldsymbol{\theta}; \mathbf{x}_i)\right] + \lambda \mathcal{C}(\boldsymbol{\theta})$$

 $\lambda \ge 0$ is a tuning parameter and control the relative impact of these two terms on the regression coefficient estimates.

When $\lambda = 0$, the penalty term has no effect

However, as $\lambda \to \infty$, the impact of the shrinkage penalty grows, and the ridge regression coefficient estimates will approach zero.

Example: Linear regression (housing prices)

Overfitting: If we have too many features, the learned hypothesis may fit the training set very well $(J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 \approx 0)$, but fail to generalize to new examples (predict prices on new examples).

Addressing overfitting:

- $x_1 = size of house$
- $x_2 =$ no. of bedrooms
- $x_3 =$ no. of floors
- $x_4 = age of house$
- $x_5 = average income in neighborhood$
- $x_6 =$ kitchen size

 x_{100}

Addressing overfitting:

Options:

- 1. Reduce number of features
 - Manually select which features to keep.
 - Model selection algorithm (later in course).
- 2. Regularization
 - Keep all the features, but reduce magnitude/values of parameters θ_{i}
 - Works well when we have a lot of features, each of which contributes a bit to predicting y.

Regularization Cost function

Suppose we penalize and make θ_3 , θ_4 really small.

$$\min_{\theta} \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \log_{\Theta} \Theta_{1}^{2} + \log_{\Theta}$$

Regularization.

 Θ_0 $\Theta_1 = \Theta_2 = ... \Theta_1 = 0$ Small values for parameters $\theta_0, \theta_1, \ldots, \theta_n$

- "Simpler" hypothesis
- Less prone to overfitting

Housing:

- Features: $x_1, x_2, \ldots, x_{100}$

- Parameters:
$$\theta_0, \theta_1, \theta_2, \ldots, \theta_{100}$$

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \left(\sum_{i=1}^{n} \mathfrak{S}_{i} \right) \right]$$

1

21 - norm: $222 \hat{r} | \theta_j |$ In regularized linear regression, we choose θ to minimize

$$J(\theta) = \frac{1}{2m} \begin{bmatrix} m \\ \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} \theta_j^2 \end{bmatrix} \qquad \underbrace{ \begin{array}{c} \mathcal{L}_{i} - norm \\ \text{regularization} \end{array}}_{i=1}$$

What if λ is set to an extremely large value (perhaps for too large for our problem, say $\lambda=10^{10}$)?

- Algorithm works fine; setting λ to be very large can't hurt it
- Algortihm fails to eliminate overfitting.
- Algorithm results in underfitting. (Fails to fit even training data well).
- Gradient descent will fail to converge.

In regularized linear regression, we choose θ to minimize

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \frac{\lambda}{2} \sum_{j=1}^{n} \theta_j^2 \right]$$

What if λ is set to an extremely large value (perhaps for too large for our problem, say $\lambda = 10^{10}$)?

Regularization

Regularized linear regression

Regularized linear regression

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} \theta_j^2 \right]$$
$$\underset{\theta}{\min J(\theta)}$$

Non-invertibility

Suppose $m \le n$, (#examples) (#features)

$$\theta = \underbrace{(X^T X)^{-1} X^T y}_{\text{Non-invertible (singular)}}$$

