
چندمتغیرهبرازش خطی 

7

 برازش خطی چندگانه)Multiple Linear Regression( براي پیشبینی یک متغیر وابسته)� ( که به صورت خطی با بیش از یک

.  مرتبط است به کار می رود )�� ,…,�� ,��( متغیر مستقل

ℎ� � = �� + ���� + ���� +⋯+ ���� = ���

��
(�)

� نمونه در � ویژگی مقدار :

X بردار شکل به را آن ها می توانیم که � نمونه ویژگی هاي :(�)� = [1, ��, ��,…, ��] ∈ ℝ��� کنیم تعریف. ��
(�)

= .است 1

� شکل به که ضرایب بردار :� = [ ��, ��, ��,…, ��] ∈ ℝ��� می کنیم تعریف را آن.

�� ≔ �� − �
�� �

���
= �� −

�

�
�(ℎ� � (�) − �(�))��

(�)

�

���

 ��= 1



Multiple features

Notation:

n= number of features

= input (features) of        training example.

= value of feature j in training example.

x� x� �� ��



Hypothesis

Previously:

Multiple features

ℎ� � = �� + ���� + ���� +⋯+ ����

ℎ� � = �� + ���� + ���� + ���� +����

x� x� �� ��

Multivariate linear regression:

�



Gradient descent for multiple variables

Hypothesis:

Cost function:

Parameters:

(simultaneously update for every                        )

Repeat

Gradient descent:



(simultaneously update            )

Gradient Descent

Repeat

Previously (n=1): New algorithm               :

Repeat

(simultaneously update        for      
)



E.g.       = size (0-2000 feet2)

= number of bedrooms (1-5)

Feature Scaling
Idea: Make sure features are on a similar scale.

size (feet2)

number of bedrooms



Replace      with                to make features have approximately zero mean 
(Do not apply to              ).

Mean normalization

E.g. 



تغییر مقیاس متغیرها
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min-max normalization

Mean normalization



Gradient descent

- “Debugging”: How to make sure gradient 
descent is working correctly.

- How to choose learning rate     .



Example automatic 

convergence test:

Declare convergence if       

decreases by less than       

in one iteration.
0 100 200 300 400

No. of iterations

Making sure gradient descent is working correctly.



Example automatic 

convergence test:

Declare convergence if       

decreases by less than       

in one iteration.
0 100 200 300 400

No. of iterations

Making sure gradient descent is working correctly.



Making sure gradient descent is working correctly.

Gradient descent not working. 

Use smaller    . 

No. of iterations

No. of iterations No. of iterations

- For sufficiently small     ,             should decrease on every iteration.
- But if      is too small, gradient descent can be slow to converge.



Summary:

- If     is too small: slow convergence.
- If     is too large:         may not decrease on 

every iteration; may not converge.

To choose    , try



Normal Equationروش آماري 
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:حالت ساده به دست آوردن کمینه یک تابع

d� �

d�
= 0

�اما در مسئله ما  ∈ ℝ���  ها برابر صفر قرار بگیرد و حل شود �است و مشتق باید براي همه  .

�� �

���
= 0 (��� ����� �)



Normal equation

Normal equation: Analytic solution

� =

1 2104 5 1 45
1 1416 3 2 40
1 1534 3 2 30
1 852 2 1 36

                                       � =

460
232
315
178

� = ���
��
���

��         ��      ��      ��        ��

is inverse of matrix             .



training examples,     features.

Gradient Descent Normal Equation

• No need to choose    .
• Don’t need to iterate.

• Need to choose    . 
• Needs many iterations.
• Works well even 

when     is large.

• Need to compute

• Slow if     is very large.



• Redundant features (linearly dependent).
E.g.            size in feet2

size in m2

What if ��� is non-invertible? (singular/ degenerate)

• Too many features (e.g.             ).

- Delete some features, or use regularization.



Housing prices prediction



برازش چندجمله 
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 برازش چندجمله اي)Polynomial Regression(قلبراي پیشبینی متغیر وابسته اي که به صورت چندجمله اي با متغیرهاي مست  

.  مرتبط است به کار می رود

ت 
یم

ق
) y(

)x(متراژ 

پیش بینی قیمت خانه : برازش چندجمله اي مثال

ℎ� � = �� + ��(����)
�+��(����)

�+��(����)
�

ℎ� � = �� + ���� + ���� + ����



Polynomial regression

Price
(y)

Size (x)



Choice of features

Price
(y)

Size (x)



Stochastic Gradient Descent vs Batch Gradient Descent

Batch Gradient Descent Stochastic Gradient Descent

J � =
�

��
∑ (ℎ� � � − � � )��

���  

Need to compute for all data, 
if you have sample size, m = 1million
Very slow to update θ

���� =  ��  −  � �′ �

���� �, (� � , � � )

=
1

2
(ℎ� � � − � � )�

1. Random Shuffle Data
2. Repeat {

for i = 1, ... , m {

}
}                

Update θ using only one data point. 
Faster

����

=  ��  −  � 
�

���
���� �, (� � , � � )



Mini-batch Gradient Descent

 اگر تعداد نمونه ها(m) خیلی بزرگ باشد، به چندین ،mini-batch  تقسیم می شوند و  در هر مرحله

.ها ر به هنگام رسانی پارامترها استفاده می شود mini-batchیکی از 



1

Mini-batch Gradient Descent

��� ����� �:

Optimize based on �(�:�)

Comp��� ���� �

������ θ

� =
    ⋮      ⋮          ⋮       
�(�) �(�)

⋯ �(�)

⋮      ⋮         ⋮   ��×�

� = 1 → ����ℎ�����

� = � → ����ℎ

� = 64, 128, 256, 512 → ���� − ����ℎ





Batch Gradient Descent Stochastic Gradient Descent



Batch Gradient Descent Stochastic Gradient Descent

Lose speedup from vectorization 
(Inefficient implementation)

Too long per iteration especially when m is 
very large



Newton Method

• Faster convergence



Newton Method



Newton Method vs Gradient Descent



Logistic Regression



Introduction

• Logistic regression is a widely used discriminative classification 

model �(� ∣ �; �).

• where � ∈ ℝ� is a fixed-dimensional input vector, � ∈ {1, … , �} is the 

class label.

• If � = 2, this is known as binary logistic regression.

• if � > 2, it is known as multinomial logistic regression, or 

alternatively, multiclass logistic regression.



Classification

Email: Spam / Not Spam?
Online Transactions: Fraudulent (Yes / No)?
Tumor: Malignant / Benign ?

0: “Negative Class” (e.g., benign tumor)

1: “Positive Class” (e.g., malignant tumor)



Threshold classifier output             at 0.5:

If                        , predict “y = 1”

If                        , predict “y = 0”



Classification:    y   =   0   or   1

can be > 1 or < 0

Logistic Regression:



Logistic Regression Model

We want



Interpretation of Hypothesis Output

= estimated probability that y = 1 conditioned on input x 

Example:  If 



Logistic regression

Suppose predict “          “ if

predict “          “  if

z



x1

x2

Decision Boundary

1 2 3

1

2

3

Predict “          “ if 





Non-linear decision boundaries

Transform input features in suitable way 

Decision boundary (where f(x) = 0) defines a circle with radius R



Training set:

How to choose parameters    ?

m examples



Cost function

Linear regression:



Logistic regression cost function

Cost ℎ�(�), � = �
− log ℎ� �                 if � = 1

− log 1 − ℎ� �        if � = 0



Logistic regression cost function

Cost ℎ�(�), � = �
− log ℎ� �                 if � = 1

− log 1 − ℎ� �        if � = 0



Logistic regression cost function



Gradient Descent

Want                    :

Repeat

(simultaneously update all     )





Gradient Descent

Want                    :

(simultaneously update all     )

Repeat

Algorithm looks identical to linear regression!



Binary logistic regression often follows the following model

Bernoulli
weight

biassigmoid

Logistic Regressionlogistic regression (Probabilistic view)

� � = 1 �; � =  � � =
1

1 + ���,
 , �ℎ��� � = ���

�

1 − �



logistic regression (Probabilistic view)

Finding the Maximum Likelihood (ML) solution is equivalent to 
minimizing the cross entropy cost function





Multiclass classification

Email foldering/tagging: Work, Friends, Family, Hobby

Medical diagrams: Not ill, Cold, Flu

Weather: Sunny, Cloudy, Rain, Snow



x1

x2

x1

x2

Binary classification: Multi-class classification:



One-vs-one:



x1

x2

One-vs-all:

Class 1:
Class 2:
Class 3:

x1

x2

x1

x2

x1

x2







Regularization



Regularization

A fundamental problem is that the algorithm tries to pick parameters that minimize loss on the 

training set, but this may not result in a model that has low loss on future data. This is called 

overfitting.

example

suppose we want to predict the probability of heads when tossing a coin. We toss it � = 3 times and 

observe 3 heads. The MLE is �mle = ��/ �� + �1 = 3/(3 + 0) = 1. However, if we use Ber ��

∣ �mle � as our model, we will predict that all future coin tosses will also be heads, which seems 

rather unlikely.



Regularization
• The core of the problem is that the model has enough parameters to perfectly fit the observed

training data  . so it can perfectly match the empirical distribution.

• However, in most cases the empirical distribution is not the same as the true distribution, so

putting all the probability mass on the observed set of � examples will not leave over any probability

for novel data in the future. That is, the model may not generalize.



Solution

� ≥ 0 is a tuning parameter and control the relative impact of these two terms on the regression
coefficient estimates.

When � = 0, the penalty term has no effect
However, as � → ∞, the impact of the shrinkage penalty grows, and the ridge regression 
coefficient estimates will approach zero.

The main solution to overfitting is to use regularization, which means to add a penalty term to the

Cost function. Thus we optimize an objective of the form

ℒ(�; �) =
1

�
�  

�

���

 ℓ ��, �; �� + ��(�)



Example: Linear regression (housing prices)

Overfitting: If we have too many features, the learned hypothesis 
may fit the training set very well (                                             ), but fail 
to generalize to new examples (predict prices on new examples).

P
ri

ce

Size
P

ri
ce

Size

P
ri

ce

Size



Example: Logistic regression

(    = sigmoid function)

x1

x2

x1

x2

x1

x2



Addressing overfitting:

P
ri

ce

Size

size of house
no. of bedrooms
no. of floors
age of house
average income in neighborhood
kitchen size



Addressing overfitting:

Options:
1. Reduce number of features

― Manually select which features to keep.
― Model selection algorithm (later in course).

2. Regularization
― Keep all the features, but reduce magnitude/values of 

parameters    .
― Works well when we have a lot of features, each of 

which contributes a bit to predicting    .



Regularization

Cost function



Intuition

Suppose we penalize and make     ,      really small.

P
ri

ce

Size of house

P
ri

ce

Size of house



Small values for parameters 
― “Simpler” hypothesis
― Less prone to overfitting 

Regularization.

Housing:
― Features: 
― Parameters:



Regularization.

P
ri

ce

Size of house



In regularized linear regression, we choose      to minimize

What if      is set to an extremely large value (perhaps for too large 
for our problem, say                  )?

- Algorithm works fine; setting     to be very large can’t hurt it
- Algortihm fails to eliminate overfitting.
- Algorithm results in underfitting. (Fails to fit even training data 

well).
- Gradient descent will fail to converge.



In regularized linear regression, we choose      to minimize

What if      is set to an extremely large value (perhaps for too large 
for our problem, say                  )?

P
ri

ce

Size of house



Regularization

Regularized linear regression



Regularized linear regression



Gradient descent

Repeat



Normal equation(Regularized)



Suppose                 ,

Non-invertibility

(#examples)  (#features)

If             ,


