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A B S T R A C T   

Microgrids have faced an increasing penetration rate of renewable energy resources (RERs), plug-in hybrid 
electric vehicles (PHEVs), combined heat and power (CHP), and storage systems. These elements need to be 
optimally scheduled so that the optimal operation of the microgrid is obtained. This study employs a novel 
random structure to optimally manage energy in microgrids which contain proton exchange membrane fuel cell- 
combined heat and power (PEMFC-CHP), RERs, PHEVs, as well as storage devices. The aim is to take into account 
the uncertainty of PHEVs and RERs models, in which Monte Carlo Simulation (MCS) is incorporated. The 
hydrogen storage strategy for PEMFC-CHP units is also used in this study, this strategy is considered by a mixed 
integer nonlinear programming (MINLP) problem. Moreover, smart charging plans are utilized to charger PHEVs. 
The objective function aims to maximize the market profit. This paper uses the modified adaptive differential 
evolution (MADE) technique for analyzing the optimal operation of the microgrid, where the intermittent 
behavior of uncertainty parameters is investigated. Differential evolution (DE) adopts an iteration-based strategy 
to enhance a candidate solution using a quality criterion and optimize the problem. Moreover, the algorithm is 
modified in order to enhance its search capability to be able to search and find local and global points. A con-
ventional test system is implemented for verifying the efficiency of the suggested strategy and various planning 
durations are considered. A comparison is also made between this method and its counterparts for various sit-
uations and conditions.   

1. Introduction 

1.1. Motivation and background 

Nowadays, most of the literature concerning power system in-
vestigates the economic, environmental, power quality, power loss, and 
energy efficiency aspect, concentrating on distribution networks [1–3]. 
In order to reach a these aims and to have higher efficient systems 
incorporating renewable energy sources such as photovoltaics (PVs), 
wind turbines (WTs), and distributed generation (DG) like fuel cell (FC) 
and microturbine (MT) is essential [4,5]. A microgrid containing 
different types of power sources helps realize an efficient, secure, and 
robust distribution network. Microgrid is composed of a group of loads 
along with small-scale power sources to locally supply the demand in a 
controllable way [6]. Microgrid is a key element in free electricity 

market thanks to its optimal operation. Due to the increasing demand, 
the utilization of DGs with RERs to generate electricity and heat energy 
escalates as well [7]. To put is simply, distribution networks consisting 
of PVs, WTs, PEMFC-CHPs, and various types of RERs form a microgrid 
and the demand is met [7]. As an essential part of a power system, 
microgrids operate in either grid-connected or grid-disconnected 
(islanded) mode [8]. The operation of DGs can be so planned that the 
resulting operation of DGs within microgrids is enhanced [8]. Behavior 
of DGs, such as PVs and WTs, is intermittent and this is because of de-
pendency on respectively irradiation and wind speed. This makes 
scheduling of such sources very challenging. A suitable scheduling will 
consider these varying parameters of RERs and the uncertain load need 
to be taken into account [9]. 

* Corresponding author at: Yasooj Branch, Islamic Azad University, Electrical Eng. Department, Yasooj, Iran. 
E-mail address: mohammadjavadkiani127@gmail.com (M. Kiani).  

Contents lists available at ScienceDirect 

Journal of Energy Storage 

journal homepage: www.elsevier.com/locate/est 

https://doi.org/10.1016/j.est.2022.104558 
Received 4 October 2021; Received in revised form 25 March 2022; Accepted 28 March 2022   

mailto:mohammadjavadkiani127@gmail.com
www.sciencedirect.com/science/journal/2352152X
https://www.elsevier.com/locate/est
https://doi.org/10.1016/j.est.2022.104558
https://doi.org/10.1016/j.est.2022.104558
https://doi.org/10.1016/j.est.2022.104558
http://crossmark.crossref.org/dialog/?doi=10.1016/j.est.2022.104558&domain=pdf
HP
Highlight

HP
Highlight



Journal of Energy Storage 50 (2022) 104558

2

1.2. Literature review 

Scheduling of RERs has widely been examined in the literature 
[10–19]. Ref. [10] discusses the stochastic energy management and 
scheduling of microgrids. The management strategy focuses on both 
grid-connected and islanded microgrids. The authors in [11] study the 
optimal operation of microgrids with distributed energy resources 
(DERs), in which active and reactive power are scheduled simulta-
neously with heat power. The suggested method encourages DERs to 
participate in meeting the demanded reactive power. The optimal 
scheduling of microgrids is realized via taking into account the heat and 
active power generation by CHP units and active-reactive power gen-
eration by DERs. The literature [12] uses the modified shuffled from 
leaping (MSFL) algorithm and investigates the economic planning of 
microgrids which contain PHEVs. The primary sources of supplying the 
demand in this paper are RERs that produce no emissions. A new day- 
ahead optimal scheduling framework has also been introduced [13], 
where a top-to-button interaction mechanism optimizes active distri-
bution networks (ADNs). The aim of this mechanism is minimizing the 

distribution network power loss and optimization of microgrids. 
Hydrogen fueling stations (HFS) have also been adopted by engineers to 
transform electricity into hydrogen so that hydrogen vehicles (HVs) are 
fed. Microgrids play a role in HFSs as helps to meet the energy demand 
of HFSs very safely and continuously [14]. Hybrid stochastic/robust 
optimization is used in a biding strategy for microgrid which partici-
pates in a day-ahead electricity market [15]. The study adopts FCs to 
play the role of CHP units. However, the role of hydrogen storage in the 
operation of FCs is neglected. The coordinated supply of the demand of a 
microgrid using integrated power, heating, and cooling system is 
addressed in [16] by incorporating a two-step scheduling model. 
Ref. [17] assesses the grid-connected microgrid containing PVs and ESSs 
from economic point of view. To maximizing the net profit of the 
microgrid within the operation horizon, a planning model for the 
microgrids is introduced in this study. A decision-making model is 
proposed in [18] to provide a mathematical expression of the optimal 
bidding in day-ahead electricity market. It also evaluates the risk man-
agement for a low-voltage grid-connected residential microgrid. 
Ref. [19] presents the optimal stochastic scheduling of a microgrid with 

Nomenclature 

Cbat PHEV battery capacity 
SOC state of the charge in PHEV battery 
AER All Electric Range is the maximum distance that the PHEV 

can travel only with the battery 
Max(DOD) maximum depth of discharge in PHEV battery 
σ/μ parameters of Log-normal pdf for smart charging of PHEV 
σm/μm parameters of Log-normal pdf for daily mileage of PHEV 
tstart charging start time of PHEV 
tD charging duration of PHEV 
ηCharger efficiency of PHEV charger 
PCharger rate of PHEV charger 
VPEMFC output voltage of PEMFC 
ENernst thermodynamic potential of PEMFC 
ηact activation polarization of PEMFC 
ηohm ohmic polarization of PEMFC 
Vcon over voltage due to concentration 
T PEMFC temperature 
Relectronic resistance of electron flow 
Rproton resistance of proton flow 
PH2 hydrogen gas pressure 
PO2 oxygen gas pressure 
ξi parametric coefficients 
Co2 oxygen concentration 
iPEMFC current of PEMFC 
rm membrane specific resistivity 
A active area cell 
L thickness of the polymer membrane 
act activity 
PH2O, out partial pressure of water 
λ water content in Nafion 
PH2O

sat saturated pressure of water 
B parametric coefficient, used in calculation of concentration 

losses 
Imax maximum current density 
PPEMFC− CHP

t active power generated by PEMFC during time t 
PLR part load ratio of PEMFC (equal to electrical generated 

power/maximum power) 
ηPEMFC− CHP efficiency of PEMFC 
πsell, t tariff of electrical energy selling to market at time t 
Loadt electrical load at time t 
rTE thermal energy to electrical energy ratio 

HPEMFC− CHP
t heat generated by PEMFC at time t 

PMax PEMFC− CHP maximum power of PEMFC 
PHPEMFC− CHP

t equivalent electric power for hydrogen production at time 
t 

πTariff tariff of electrical energy selling to customer 
PGi(t) power generation of ith power unit 
BGi(t) the bid of ith DG at hour t 
SGi(t) start-up or shut down cost of ith DG at hour t 
Ng number of generating units 
Psj(t) active power of jth storage device at hour t 
Bsj(t) the bid of jth storage device at hour t 
Ssj start-up or shut down bid of jth storage device at hour t 
PGrid(t) active power generation of the grid at t 
BGrid(t) utility bid at time t 
Ns number of storage devices 
HBoiler

t the heat generated by the boiler at time t 
ηst hydrogen storage efficiency 
PHPEMFC− CHP, Usage

t equivalent electric power for hydrogen usage at time t 
PHSave PEMFC− CHP

t equivalent electric power for hydrogen storage at time 
t 

Hfactor a conversion factor = 1.05 × 10− 8 / Vcell, Vcell = 0.6 
PPHEV, l(t) the sum of lth PHEV power demand at time t 
NPHEV total number of PHEVs 
Ps, charge, Ps, discharge allowed rate of charge-discharge amid a positive 

period of time (Δt) 
ηcharge, ηdischarge battery efficiency during charge/discharge period 
Wess(t) sum of stored energy inside the battery at hour t 
HDemand

t thermal load demand at time t 

List of abbreviations 
FC fuel cell 
PV photovoltaic 
PHEV plug-in hybrid electric vehicle 
WT wind turbine 
CHP combined heat and power 
PEMFC proton exchange membrane fuel cell 
DE Differential Evolution algorithm 
MADE modified adaptive differential evolution 
DG distributed generation 
MG micro grid 
PDF probability density function 
RES renewable energy source  
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CHP-PEMFCs, PVs, WTs, and hydrogen storage to enhance reliability. 
The paper also models the microgrid so that the optimal programming of 
various power generation sources of the microgrid is realized, where the 
uncertainty of RERs is also considered. Table 1 reveals the summary of 
the literature. 

1.3. Contributions 

According to the research background and Table 1, while we know 
that PHEVs will play a key role in the upcoming microgrids, this has 
rarely been discussed in the literature. The advancements in PHEVs have 
recently been appeared all over the world [20]. Based on [21,22], 
PHEVs have witnessed considerable progress. The role of PHEVs in 
microgrids needs more attention and deep analysis, also according to the 
literature and Table 1, the coordinated programming of storage device, 
WT, PV, MT, as well as FC-CHP units with PHEVs charging demand and 
hydrogen storage strategy has rarely been studied at the same time when 
investigating their participation in the electricity market. To fill these 
research gaps, the current study delves into investigating the implica-
tions of PHEVs charging plan on the microgrid operation, also optimal 
scheduling of storage devices, WTs, PVs, MTs, as well as FC-CHP units 
and hydrogen storage has been studied at the same time when investi-
gating their participation in the electricity market. Considerable pene-
tration rate of PHEVs ensures that they highly impact the operation of 
microgrid as the behavior of PHEVs charging is uncertain. Considering 
this, the paper adopts the MCS method to introduce an efficient uncer-
tainty management strategy for microgrids operating under a reliable 
condition. To perform an appropriate modeling of the uncertainties, 
probability density functions (PDFs) are employed in this study. When 
PHEVs are available, achieving the optimum solution is difficult for the 
problem of microgrid operation management. Hence, one high- 
performance optimization algorithm needs to be used for detecting the 
optimum global solution. In order to address the operation problem, the 
modified adaptive differential evolution (MADE) technique has been 
established. Ref. [23] presents the Differential Evolution (DE) algorithm 
for finding the solutions of optimization problems. Also, a novel muta-
tion technique is adopted to enhance local search and accelerate 
convergency of DE. This technique is expressed through weighted dif-
ference vector assessed by worst and best members of a population [24]. 
In an attempt to find a high-performance characteristic in this method, 
some control parameters are used as well [25]. To improve the capa-
bility of local and global search of the DE algorithm, a novel adaptive 
modification strategy is incorporated here. The method performance is 
verified on a test microgrid. The following summarizes the contributions 
of the paper:  

• A coordinated scheduling is proposed for all components of the 
microgrid, including storage device, PEMFC-CHP, WT, MT and PV in 
the form of an optimal stochastic model,  

• A novel method is introduced so that uncertainties related to the 
PHEVs charging demand are considered, 

• For enhancing the PEMFC-CHPs efficiency, hydrogen storage tech-
nique is incorporated,  

• Heat load is used in the test microgrid,  
• For ameliorating the efficiency and algorithm performance, a 

modified DE algorithm is offered. 

1.4. Paper organizations 

The rest of this paper is organized as follows: Section 2 describes 
various charging models of PHEVs. PEMFC-CHP is introduced in Section 
3 while dealing with hydrogen storage strategy. Section 4 includes the 
objective function with its constraints. The introduced optimization and 
modification approaches as well as their application on a given problem 
are presented in Section 5. Then, a comparison is made between the 
results obtained by the MADE algorithm and similar algorithms in Sec-
tion 6, and the impacts of PHEVs, PEMFC-CHP, and heat load are 
elucidated as well. Eventually, Section 7 concludes from the paper. 

2. Charging model of PHEV 

Chargeable plug-in electric vehicles (PEVs) involve two classes: plug- 
in hybrid electric vehicles (PHEVs) as well as electric vehicles (EVs). The 
former utilizes electrical energy and fossil fuel energy, while the latter 
works based on mere electricity. In the past years, these types of vehicles 
have gained much attention because of the increased oil price. They also 
reduce the amount of greenhouse gas (GHG) emissions. 

Various factors can affect the charging operation of this type of 
vehicle such as the charger type, method of charging, state of charge of 
battery, the number of charged batteries, start and duration of charging, 
and capacity of the battery. As far as the PHEVs charging demand in a 
microgrid is concerned, the total vehicle load is unknown owing to 
uncertainties of charging factors. This current study introduces two 
uncontrolled and smart schemes for charging, so that the PHEV charging 
impacts on the microgrid are addressed. 

2.1. Startup time of charging 

The most straightforward charging strategy among various charging 
designs is to plug the vehicle into a power outlet and after coming in the 
evening, charging starts. In this “worst-case scenario”, 50% of the per-
sonal EVs are expected (assuming that on average every other day, 
commuting and non-commuting vehicles should be charged) and whole 
of corporate EVs should be charged every day (except weekends) and 

Table 1 
Recent research works classification.  

Ref. To consider Coordination of 

PHEV charging 
demand 

PEMFC 
CHP 

Uncertainty Hydrogen 
storage 

Reliability IEEE test 
system 

Solver WT PV FC MT Battery Utility 

[10] Yes No Yes No Yes No MA Yes Yes Yes Yes Yes No 
[11] No Yes No No No Yes MA No No Yes Yes No No 
[12] Yes No Yes No No No EA Yes Yes Yes Yes No Yes 
[13] No No Yes No No No MA Yes Yes No No Yes No 
[14] No No Yes Yes Yes No MA Yes No No No Yes Yes 
[15] No No Yes No No No MA Yes Yes Yes Yes Yes No 
[16] No No No No No No EA Yes Yes No No Yes No 
[17] No No No No Yes No EA No Yes No No Yes No 
[18] No No Yes No Yes No MA No Yes No No No Yes 
[19] No Yes Yes Yes Yes Yes EA Yes Yes No No No No 
PM Yes Yes Yes Yes No No MAEA Yes Yes Yes Yes Yes Yes 

PM: proposed model, MA: mathematical approach, EA: evolutionary algorithm, MAEA: modified adaptive evolutionary algorithm. 
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almost start charging simultaneously [26]. It is worth mentioned that 
the model assumes that a great amount of charge demand is met by EVs. 
The average time of charging EVs is calculated by network loading data 
in the uncontrolled mode. To address the uncertainty and incorrectness 
of the given modeling, an average of 6–7 pm rectangular probability 
density function (PDF) is adopted. According to this pattern, PHEVs are 
mainly charged during 6 pm–7 pm with certain probability levels 
specified using the PDF. Here the Monte Carlo Simulation (MCS) strat-
egy is incorporated for modeling such uncertainties. Obviously, statis-
tical data with PDFs can be considered similarly; thus, PHEVs start 
charging between 6 and 7 pm in the uncontrolled charging mode, which 
is mathematically described using a rectangular PDF with low distri-
bution support from the charging start [26]. 

f (tstart) =
1

b − a
a ≤ tstart ≤ b a = 18, b = 19 (1)  

where tstart is the charging start time of PHEV. To reduce the residential 
electricity consumption cost, PHEV owners can use a smart scheme, the 
best performance can be attained by this smart scheme of charging due 
to the reciprocal advantages of the microgrid and the households that 
charge their PHEVs. When the cost of electricity is at minimum price or 
excessive capacity exists, this charging scheme of vehicles connected to 
this power outlet is done by microgrid central controller (MGCC). In this 
case, as the charging operation starts, a normal PDF would better 
determine [26]. 

f (tstart) =
1

σ
̅̅̅̅̅
2π

√ e

(

− 1
2

(
tstart − μ

σ

)2
)

μ = 1, σ = 3 (2)  

where μ and σ are the parameters of log-normal pdf for smart charging of 
PHEV and tstart is the charging start time of PHEV. Fig. 1 shows the 
different patterns of charging start time in each strategy. 

2.2. Duration of charging 

The required period of charging a PHEV, tD, at the charging startup 

can be modeled by Eq. (3) [27]: 

tD =
Cbat × (1 − SOC) × Max(DOD)

ηCharger × PCharger
(3)  

where Cbat is the PHEV battery capacity, SOC is the state of the charge in 
PHEV battery, Max(DOD) is the maximum depth of discharge in battery 
of PHEV, ηCharger is the efficiency of PHEV charger and PCharger is the rate 
of PHEV charger. The charger rate (P) is specified in accordance with the 
type of charger and its efficiency (ƞƞ) from the time range of PHEVs 
charging. Ref. [28] shows charger raters for various chargers. Chargers 1 
and 2 are used for residential consumption while Level 3 chargers are 
generally incorporated in bulk jobs and transmission, which will not be 
addressed in this paper. 

The battery capacity (Cbat) and the share of the market relevant to 
PHEVs are determined based on vehicle classification which its reported 
information is extracted from [28], which shows different categories of 
EVs. However, no direct relationship is observed between the vehicle 
size and its battery capacity. For instance, Toyota Prius is an average 
vehicle with 4.4 kWh battery capacity, and the BMW X5 eDrive as an 
SUV has 9 kWh battery capacity. In addition, Chevy Volt, is a typical 
economic vehicle with 17.1 kWh battery capacity, while Mitsubishi 
Outlander, a sport vehicle, has 12 kWh battery capacity. Thus, this 
proposed method can still be applied to other categories of EVs and can 
be employed to solve the challenges of the rest of EV classes. For 
different PHEVs, Cbat pursues the Eq. (4) as parameters of a normal PDF 
[29]. Ref. [29] reports the specifications of battery, MinCbat as well as 
MaxCbat, for every class of vehicle; this vehicle class is accidentally 
chosen by as same probability as that vehicle's share to the market. 

μCbat
=

MinCbat + MaxCbat

2

σCbat =
MaxCbat − MinCbat

4

(4)  

where MinCbat and MaxCbat are the minimum and maximum battery 
capacity of PHEV respectively, μCbat, σCbat are the parameters of log- 
normal pdf for battery capacity of PHEV. Fig. 2 illustrates the 

Fig. 1. Different patterns of charging start time.  

Fig. 2. Probability density function of PHEV battery capacity.  
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probability density functions of PHEV battery capacity. 
Equivalent SOC is a criterion for the battery and is described as the 

stored energy ratio of the battery and the total battery capacity, as 
shown in Eq. (5). This is determined in EVs based on the mile traveled 
and all-electric range (AER) [22]. From technical terms, PHEVs are 
categorized as PHEV-20, 30, 40, and 60, which are associated with their 
AERs, and AER shows miles traveled. PHEV-20 is considered as a con-
ventional PHEV that was available in the past [30,31]. Nonetheless, 
other PHEVs can also be taken into account: 

SOC =

⎧
⎨

⎩

0 m > AER
AER − m

AER
× 100%m ≤ AER

(5)  

where AER is the maximum distance that PHEV can travel only with the 
battery and m is the distance traveled by a vehicle in miles which is 
modeled using a normal logarithmic PDF, as expressed in Eq. (6) [30]: 

f (m) =
1

mσm
̅̅̅̅̅
2π

√ e

(

−

(
ln(m)− μm

2σ2

)2 )

m > 0 (6)  

where f(m) is the PDF of PHEV daily distance driven and σm, μm are the 
parameters of this log-normal PDF. Fig. 3 illustrates the probability 
density functions related to the daily distance traveled by the PHEV and 
the charge status of the PHEV battery. 

3. CHP based on fuel cell considering hydrogen storage strategy 

3.1. FC model 

Electricity and heat energy can be supplied via various approaches, 
one of which is the conversion of chemical energy. The present work 
adopts the PEMFC as an electric heating device. The hydrogen and ox-
ygen chemical reaction provides the electricity and heat needed for 
PEMFC. Some amount of water is also produced in this reaction. The 
power obtained by PEMFC is around 0.5–0.9 V and this is not sufficient 
enough to start the PEMFC; however, by considering several cells in 
series, the total energy intensifies that can be utilized for supplying 
thermal or electrical loads in the microgrid. Therefore, it can operate as 

an efficient generation unit. The generated electricity amount of PEMFC 
can be determined by next equation: 

VPEMFC = ENernst − ηact − ηohm − Vcon (7)  

where VPEMFC, ENernst are the output voltage and the thermodynamic 
potential of PEMFC respectively, ηact is the activation polarization, ηohm 
is the ohmic polarization and Vcon is the over voltage due to concen-
tration in PEMFC. Eq. (8) calculates ENernst [32]: 

ENernst = 1.229 −
(
0.85× 10− 3)×(T − 298.15)+

(
4.308× 10− 5)×T

× [ln(PH2)+ 1/ln(PO2) ]
(8)  

where T is the PEMFC temperature, PH2 is the pressure of hydrogen gas 
and PO2 is the pressure of oxygen gas. The voltage drop in the cell re-
action is found by Eq. (9) [32]: 

ηact = − [ξ1 + ξ2 ×T + ξ3 ×T × ln(Co2)+ ξ4 ×T × ln(iPEMFC) ] (9)  

where ξi are the parametric coefficients, Co2 is the oxygen concentration 
and iPEMFC is the current of PEMFC, the amount of Co2 in Eq. (9) is found 
by Eq. (10) [33]: 

Co2 =
PO2

5.08 × 106exp
(
− 498

T

) (10)  

where T is the PEMFC temperature and PO2 is the pressure of oxygen gas. 
The total resistance in a cell is shown by parameter ηohm. The voltage 
drop because of the electron and proton particle transmission within the 
electrolyte leads to this equivalent resistance. This parameter is calcu-
lated as [34]: 

ηohm = − iPEMFC ×
(
Relectronic +Rproton) (11)  

where iPEMFC is the current of PEMFC, Relectronic is the resistance of 
electron flow and Rproton is the resistance of proton flow, Rproton in the 
above equation is found as follows [34]: 

Rproton =
rm

A
×L (12)  

where rm is the resistivity of membrane specific, A is the active area cell 

Fig. 3. Probability density function of daily distance traveled by the PHEV and SOC.  
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and L is the polymer membrane thickness, Eq. (13) gives the value of 
parameter rmin Eq. (12): 

rm =
181.6 ×

[
1 + 0.03 ×

( iPEMFC
A

)
+ 0.062 ×

(
T

303

)2
×
( iPEMFC

A

)2.5
]

[
λ − 0.634 − 3 ×

( iPEMFC
A

)
exp

(
4.18 ×

(
T − 303

T

) ) ] (13)  

where λ is the water content in Nafion, T is the PEMFC temperature and 
iPEMFC is the current of PEMFC, parameter λ is considered as follows 
concerning the value of act parameter [32]: 

λ =

⎧
⎪⎪⎨

⎪⎪⎩

0.0043 + 17.81 × act − 39.85 × act2 + 36 × act3, 0 < act ≤ 1
14 + 1.4 × (act − 1), 1 < act < 3

16.8, act = 3
22, act > 3

(14) 

The value of act (i.e. the identification of water vapor activity coef-
ficient) can be found as: 

act =
PH2O,out

Psat
H2O

(15)  

where PH2O, out and PH2O
sat are the partial pressure and saturated pressure 

of water in system respectively, the voltage drop associated with the 
concentration or aggregated transmission of reacting gases can be rep-
resented by Vcon in Eq. (16) [32]: 

Vcon = − B× ln
(

1 −
I

Imax

)

(16)  

where B is the parametric coefficient, I and Imax are the current and 
Maximum current density respectively, as per this equation, the output 
current and voltage can result in active power output of the generation 
system: 

PPEMFC = iPEMFC ×VPEMFC (17)  

where PPEMFC is the active power generated by PEMFC, iPEMFC and 
VPEMFC are the current and output voltage of PEMFC respectively. 

3.2. Heat energy generation technology of FC 

Provided that PEMFCs function at either generation modes of elec-
tricity and heat, the most proficiency can be attained. Such operation is 
taken into account in the present paper. Eqs. (18) and (19) calculate the 
efficiency and the ratio between the electricity and heat and the heat 
depending on the PLR [34]: 

PLR =
Pt

PEMFC− CHP

PMax PEMFC− CHP
(18)  

where PPEMFC− CHP
t is the active power generated by PEMFC at time t and 

PMax PEMFC− CHP is the maximum power of PEMFC. 

For PLR ≤ 0.05 ηPEMFC− CHP = 0.2716 rTE = 0.6801
For PLR > 0.05
ηPEMFC− CHP = 0.9033PLR5 − 2.999PLR4 + 3.6503PLR3

− 2.0794PLR2 + 0.4623PLR + 0.3747
rTE = 1.0785PLR4 − 1.9739PLR3 + 1.5005PLR2 − 0.2817PLR

+0.6838

(19)  

where ηPEMFC− CHP is the efficiency of PEMFC and rTE is the thermal en-
ergy to electrical energy ratio, the equations below show how heat 
power generation depends on electrical power generation [34]: 

Ht
PEMFC− CHP = rTE ×

(
Pt

PEMFC− CHP +Pt
HPEMFC− CHP

)
(20)  

PMax PEMFC− CHP = Pt
PEMFC− CHP +Pt

HPEMFC− CHP
(21)  

where HPEMFC− CHP
t is the heat generated by PEMFC at time t, 

PPEMFC− CHP
t is the active power generated by PEMFC at time t, 

PHPEMFC− CHP
t is the equivalent electric power for hydrogen production at 

time t and PMax PEMFC− CHP is the maximum power of PEMFC. 

Fig. 4. The operation flowchart of PEMFC-CHP assuming hydrogen storage.  
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3.3. Hydrogen storage operations technique 

The PEMFC capacity in the operational mode is less than that of its 
normal; however, when practical implementation of hydrogen storage 
technique is perceived, the PEMFC capacity can be increased up to a 
sufficient level. Therefore, some amount of hydrogen is stored and uti-
lized. The range of changes considered for hydrogen generation is shown 
by (0, d), where d represents the difference among the operational and 
nominal powers of PEMFC. Thereby, the electrical energy amount 
should be considered in accordance with the remaining hydrogen. The 
operation flowchart of PEMFC as well as CHP by considering the 
hydrogen storage strategy is illustrated in Fig. 4. The required heat en-
ergy of the generated heat is because of the reaction in PEMFC. This 
produced hydrogen is recycled for electricity generation. The remaining 
hydrogen can be stored for later consumption or daily usage. 

4. Problem formulation 

The U.S. Department of Energy defines a microgrid as a group of 
integrated loads and power sources, for which the electrical constraints 
have been specified clearly, and it acts by taking the network into ac-
count as a controllable entity. Based on this definition, a microgrid can 
be connected to or disconnected from the network so that it can operate 
at both grid-connected and islanded modes [35]. From a technical point 
of view, a hierarchical structure is advised to be adopted for microgrid 
management. This structure includes three layers: A) Primary control 
that stabilizes voltage and frequency using droop controllers, B) The 
voltage and frequency static mode deviations are compensated using the 
primary control in secondary control, and C) Economic considerations 
are handled in tertiary control and power flow among the microgrid and 
the main grid is verified to reach the optimum operation in this level as 
well. The microgrid is able to function in either grid-connected or 
islanded modes at each layer. In the former mode, power can be 
exchanged among microgrids and the main grid based on the demand 
and profits. In the latter one, the microgrid can operate independently of 
the upstream network. The current research evaluates the optimal 
operation of the microgrid. The total cost of electricity supply within the 
microgrid is minimized via security constraints such as PHEVs. 

4.1. Microgrid operation cost in objective function 

The optimal operations management objective function is maxi-
mizing the profit, which is equal to the minimization of the total cost of 
local generation and the balance among the microgrid and the main 
grid. Hence, the total operation cost from a mathematical perspective 
can be defined by the local generation source-related fuel cost, switch 
on/off cost of generation units, as well as the purchased/sold power 
from/to the main grid [6]: 

Max.(Profit) = Max.(Revenue − Cost) (22)  

Min.f (X) = Min.( − Profit) = Min.(Cost − Revenue) (23)  

Revenue = RevenueDemand +RevenuePower Sell (24)  

Revenue =
∑24

t=1
πTariff × Loadt +

∑24

t=1
πsell,t ×Psell,t (25)  

where πTariff is the electrical energy tariff selling to client, Loadt is the 
electrical load at hour t, πsell, t is the electrical energy tariff selling to 
market at hour t and Psell, t is the electrical power sold to market. 

Cost =
∑T

t=1
Costt

=
∑T

t=1

{
∑Ng

i=1
[Ui(t)PGi(t)BGi(t) + SGi |Ui(t) − Ui(t − 1) |]

+
∑Ns

j=1

[
Uj(t)Psj(t)Bsj(t) + Ssj |Uj(t) − Uj(t − 1) |

]

+PGrid(t)BGrid(t)}

(26)  

where BGi(t) and Bsj(t) represent the bids of the DGs and storage devices 
at time t, SGi and Ssj are the start-up or shut-down bids for ith DG and jth 
storage device respectively, PGrid(t) is the power generation of the grid at 
hour t and BGrid(t) is the utility bid at time t. Needless to say, all infor-
mation has been extracted from [6]. Regarding the real data of RERs, the 
solution procedure is still reliable and can be similarly implemented. 
Parameter X in the objective function is the variable vector of the system 
and includes the DGs, batteries and main grid active powers, and DGs 
switching on/off status (UK): 

PG =
[
PG,1,PG,2,…,PG,Ng

]

PS =
[
PS,1,PS,2,…,PS,Ns

]

PG,i =
[
PG,i(1) ,PG,i(2) ,…,PG,i(T)

]

i = 1, 2,…,Ng
PS,j =

[
PS,j(1) ,PS,j(2) ,…,PS,j(T)

]

j = 1, 2,…,Ns
Ug = [U1,U2,…,Un ], Uk ∈ {0, 1}
Uk = [Uk(1) ,Uk(2) ,…,Uk(T) ]
k = 1, 2,…, n

(27)  

where PG and PS are the power vector of all DGs and storage devices 
respectively, Ug is the state vector stating OFF or ON states of units, Uk is 
the status of unit k at time t, Ns and Ng are the total number of storage 
and generation units respectively. 

4.2. Objective function variations considering PEMFC-CHP and hydrogen 
storage strategy of the microgrid 

Regarding the simulation electricity and heat power generation 
capability of the fuel cell and hydrogen storage and sale, the following 
changes are made, in which case the heat need of heat load is supplied by 
the boiler and PEMFC-CHP. 

Costt
PEMFC− CHP = BidPEMFC− CHP × Pt

PEMFC− CHP + BidBoiler × Ht
Boiler

+BidPump.ηst ×
(

Pt
HPEMFC− CHP

+ Pt
HPEMFC− CHP,Usage

) (28)  

where BidPEMFC− CHP, BidBoiler and BidPump are the bids of the PEMFC, 
boiler and hydrogen pump respectively, PPEMFC− CHP

t is the output active 
power of PEMFC at time t, HBoiler

t is the heat generated by the boiler at 
hour t, ηst is the hydrogen storage efficiency, PHPEMFC− CHP

tand PHPEMFC− CHP, Usage
t 

are the equivalent electric power for hydrogen production and hydrogen 
usage at time t respectively. 

Revenuet
PEMFC− CHP = BidHs ×Pt

HSave PEMFC− CHP
×Hfactor (29)  

where PHSave PEMFC− CHP
t is the equivalent electric power for hydrogen storage 

at time t and Hfactor is a conversion factor. 

4.3. Constraints 

4.3.1. Power generation and demand equation 
The sum of battery output power, active power of DGs along with 

exchanging power with the main grid should be similar to the microgrid 
loss in addition to the consumed power of the PHEV charger. The power 
loss of small radial grids can be neglected compared to the total power 
generation. As a result, the power balance equation is written as: 
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∑Ng

i=1
PG,i(t) +

∑NS

j=1
PS,j(t)+PGrid(t) =

∑NL

k=1
PL,k(t) +

∑NPHEV

l=1
PPHEV,l(t) (30)  

where PL, k(t) and PPHEV, l(t) are the amount of kth load level and sum of 
lth PHEV power demand at hour t respectively. 

4.3.2. Generation constraints 
The constraints on power generation by batteries, microgrids, as well 

as the transferred power of the main grid can be expressed by [6]: 

PGi,min(t) ≤ PGi(t) ≤ PGi,max(t)
PGrid,min(t) ≤ PGrid(t) ≤ PGrid,max(t)

(31)  

where PGi, min(t) and PGrid, min are the minimum power generation of ith 
DG and the grid at the hour t, PGi, max(t) and PGrid, max(t) are the 
maximum power generations of ith DG and the grid at the hour t. 

4.3.3. Constraints on charger efficiency and the battery 
As the storage device can operate in both modes of charge and 

discharge, Ps can Ps, charge and/or Ps, discharge show the storage device 
charging or discharging status, respectively. As shown in Eq. (32), Ps 
encounters charging and discharging limitations in both cases, Eq. (32). 
Hence, the stored energy amount of a battery is limited as follows [6]: 

Wess(t) = Wess(t − 1) + ηchargePs,chargeΔt −
1

ηdischarge
Ps,dischargeΔt

⎧
⎪⎪⎨

⎪⎪⎩

Wess,min ≤ Wess(t) ≤ Wess,max

Ps,charge(t) ≤ Pcharge,max

Ps,discharge(t) ≤ Pdischarge,max

(32)  

where Wess(t) and Wess(t − 1) are the stored energy amount of the battery 
at time t and t − 1, Ps, charge(Ps, discharge) is the allowed rate of charge 
(discharge) in a positive period of time (Δt), ηcharge(ηdischarge) is the bat-
tery efficiency in charge(discharge) status. Wess, min and Wess, max are the 
minimum and maximum stored energy amount of the battery respec-
tively, Pcharge, max (Pdischarge, max) is the upper limit of battery charge 
(discharge) rate in each duration Δt. 

4.3.4. Applied constraints considering PEMFC-CHP and hydrogen storage 
technique 

Here, the simultaneous electricity and heat power generation ca-
pacity are considered for the fuel cell and taking into account hydrogen 
storage and sale, the following constraints are added to the previous 
ones: 

Ht
PEMFC− CHP +Ht

Boiler = Ht
Demand (33)  

0 ≤ Pt
HPEMFC− CHP

≤ PMax PEMFC− CHP − Pt
PEMFC− CHP (34)  

0 ≤ Pt
HPEMFC− CHP,Usage

≤ max
{(

PMax PEMFC− CHP − Pt
PEMFC− CHP

)
,

∑t− 1

k=1

(
Pk

HPEMFC− CHP
− PHk

PEMFC− CHP,Usage

)
} (35)  

where HPEMFC− CHP
t and HBoiler

t are the heat generated by PEMFC and 
boiler at time t, HDemand

t is the thermal load demand at time t and 
PHPEMFC− CHP, Usage

t is the equivalent electric power for hydrogen usage at time 
t. 

5. Problem-solving procedure 

The following paragraphs describe the suggested MADE algorithm 
and show how it finds the operation solution of the microgrid's man-
agement problem. 

5.1. Differential Evolution algorithm 

First of all, the initial population is generated, where NP solution is 
produced randomly through samples of a uniform distribution. Once this 
step is finished, the DE algorithm updates the population and a new 
population is created. Until either meeting the convergence criterion or 
reaching to the maximum number of iterations, this should be repeated. 
Mutation, crossover, and selection operators are used in updating pro-
cess. The first two operators produce the new population. The third 
operation selects the suitable solutions for involving in the subsequent 
generation [36]. 

The DE algorithm, finally, establish a population with NP individual 
shown by vectors of dimension D. The candidate solutions are repre-
sented by Xi, G = {xi, G

1,…,xi, G
D}, i = 1, …, NP. In the initial population, 

the whole search space is discovered randomly so that the individuals 
are randomized uniformly. The maximum and minimum boundaries of 
the individuals are shown by Xmin = {xmin

1,…,xmin
D} and Xmax = {xmax

1, 
…,xmax

D}. For instance, Eq. (36) generates the jth parameter initial 
value in the ith individual of generation G = 0. 

xj
i,o = xj

min + rand(0, 1)⋅
(
xj

max − xj
min

)
, j = 1, 2, 3,…,D (36)  

rand(0,1) denotes a random variable in the range of [0, 1]. 
Mutation operation: Once the primary population is established, the 

aforementioned algorithm employs the mutation operation to create a 
mutant vector Vi, G corresponding to individual Xi, G. This is known as 
target vector. Several different strategies can be adopted to establish a 
mutant vector Vi, G = {Vi, G

1,…,Vi, G
D} for each target vector Xi, G. Some 

of the widely-used and conventional mutation strategies include: 

Vi,G = Xr1
i,G +F⋅

(
Xr2

i,G − Xr3
i,G

)
(37)  

Vi,G = Xbest,G +F⋅
(

Xr1
i,G − Xr2

i,G

)
(38)  

Vi,G = Xi,G +F⋅
(
Xbest,G − Xi,G

)
+F⋅

(
Xr1

i,G − Xr2
i,G

)
(39)  

Vi,G = Xbest,G +F⋅
(

Xr1
i,G − Xr2

i,G

)
+F⋅

(
Xr3

i,G − Xr4
i,G

)
(40)  

Vi,G = Xr1
i,G +F⋅

(
Xr2

i,G − Xr3
i,G

)
+F⋅

(
Xr4

i,G − Xr5
i,G

)
(41) 

(r1, r2, r3, r4, r5) indices as different integer numbers are produced 
randomly for each of the mutant vectors. F denotes a scaling factor 
which is positive control parameter and utilized to scale the difference 
vector. Xbest, G that has the best value of fitness is the best vector within a 
given population. 

Crossover operation: Once the mutation operator is applied, it is the 
crossover operator's turn to be applied to a target vector Xi, G and its 
related mutant vector Vi, G. As a result, the trial vector is established as: 
Ui, G = {Ui, G

1,…,Ui, G
D}. The original DE algorithm uses a binomial 

crossover. 

uj
i,G =

⎧
⎨

⎩

vj
i,G, if

(
randj[0, 1) ≤ CR

)
or (j == jrand)

xj
i,G, otherwise

(42) 

In Eq. (42), the crossover rate denoted by CR monitors the fraction of 
parameter values that are achieved from the mutant vector, which is 
usually a specific value between [0, 1). Parameter jrand is an integer that 
is selected randomly between [1, D]. The jth parameter of the mutant 
vector is duplicated operator to the corresponding element in the trial 
vector Ui, G by the Vi, Gbinomial crossover if randj[0,1) ≤ CR or j = =

jrand. Otherwise, it will be duplicated from the related target vector Xi, G. 
The rest of the parameters in the trial vector Ui, G are copied from the 
related target vector Xi, G. The parameter jrand ensures that at least one 
parameter of the trial vector Ui, G differs from all parameters of the 
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related target vector Xi, G. 
Selection Operation: In the case the trial vector is not between the 

permissible range, they are chosen again in the suitable range. Next, the 
objective function values of trial vectors are obtained and a selection 
operation is carried out to find the favorable population. Then, a com-
parison is made between the values related to trial vectors, f(Ui, G), and 
the values of related target vectors, f(Xi, G), for current population. In the 
case, the latter values are more or similar to the former ones, the trial 
vector substitutes the target vector and are placed within the next 
generation. If the opposite is true, the target vectors are maintained. The 
following expression states the selection operation: 

Xi,G+1 =

{
Ui,G, if f

(
Ui,G

)
≤ f

(
Xi,G

)

Xi,G otherwise (43) 

Until the stop conditions are not met the steps are repeated. The DE 
algorithm is implemented by: 

Step 1. Initialization: number of generation, G, is set on 0 and a 
population with NP individuals is established in a random way: 

PG =
{

Xi,G,…,XNP,G
}

with Xi,G =
{

x1
1,G,…, xD

1,G

}
, i = 1,…,NP 

The individuals should be distributed uniformly within [Xmin,Xmax], 
where Xmin = xmin

1, …, xmin
D and Xmax = xmax

1, …, xmax
D. 

xj
i,o = xj

min + rand(0, 1).
(
xj

max − xj
min

)
, j = 1, 2, 3,…,D 

Step 2. As far as the stop condition does not hold, do the following: 
Step 2.1. Mutation. 
For target vector Xi, G, produce a mutated vector as Vi, G = {Vi, G

1,…, 
Vi, G

D} 

Vi,G = Xr1
i,G +F.

(
Xr2

i,G − Xr3
i,G

)

Step 2.2. Crossover 

for i = 1 : NP  

jrand = [rand[0, 1)D ]

for j = 1 : D  

uj
i,G =

⎧
⎨

⎩

vj
i,G, if

(
randj[0, 1) ≤ CR

)
or (j == jrand)

xj
i,G, otherwise  

end  

end 

Step 2.3. Selection 

for i = 1 : NP 

Then, the trail vector Ui, Gshould be evaluated as: 

if f
(
Ui,G

)
≤ f

(
Xi,G

)

Xi,G+1 = Ui,G&&f
(
Xi,G+1

)
= f

(
Ui,G

)

end  

end  

end 

Step 2.4. Set G = G + 1 

end  

5.2. The MADE algorithm 

Global exploration and local exploitation are the two factors 
impacting any given search algorithm that works based on population 
[37]. The DE algorithm-related search potential and convergence speed 
depend on the mutation strategy. This algorithm shows a satisfactory 
global exploration capability; however, its convergence speed is low and 
local exploitation is not suitable [38]. Regarding the conventional DE 
algorithm, the mentioned three vectors are randomly selected to be used 
in mutation strategy and the base vector is chosen from these vectors. As 
a result, the mutation strategy DE/rand/1/bin can preserve diversity of 
the population and global search potential. Nonetheless, its convergence 
speed is not that much satisfactory. To deal with this, a novel mutation 
strategy named directed mutation that utilizes a weighted difference 
vector is employed in the current research so that the local search is 
enhanced and the convergence is accelerated. The worst and best in-
dividuals from a given generation are adopted to assess the capability of 
this scheme [24]. The new scheme is expressed in Eq. (44): 

vG+1
i = XG

r +F
(
XG

b − XG
w

)
(44) 

Xb
G and Xw

G denotes the best and worst vectors, and Xr
G shows a 

vector randomly selected from the population. The new scheme aims to 
preserve the random base vector in the original mutation equation, 
while Xb

G as well as Xw
G substitute the two other vectors of this popu-

lation so that the difference vector is obtained. Provided that all of the 
vectors have as the same and opposite directions with the best and worst 
vectors, respectively, the global solution is found straightforwardly. 
Thus, a new rule is formed for the mutation and suitable local search and 
high convergence speed are reached. Moreover, thanks to the desirable 
adaptation of control parameters, a preferred performance property is 
achieved to be applied to various optimization problems. 

The suggested method tunes control parameters F and CR but not 
parameter NP. The first two parameters demonstrate superior impact on 
the DE algorithm than NP. Parameter F mostly affects the convergence 
speed. Consequently, exploration in the early stages of the DE algorithm 
is enhanced for higher values of F. Conversely, lower values of F dete-
riorate the performance of the algorithm in next generations. Stable 
distribution is used in the suggested algorithm. 

The individuals in this algorithm pose specific control parameters of 
Fi and CRi, i showing the index of an individual. These parameters take 
the assumed initial values of 0.5 and 0.9. In the next step, mutation and 
crossover operators are applied. When applying the selection operator, 
control parameters are saved in F and CR memories, respectively. And, 
the trial vector would be used as an individual in the subsequent gen-
eration. Once this selection operation ends, the parameter adaptation is 
included [25]. Stable distribution adapts Fi in accordance to the average 
value of Fi. In the case Fi< 0.1 or Fi > 1, it is truncated to 0.1 and 1, 
respectively. 

The following describes how the adaptation is performed on the 
scaling factor (αF): 

Fi,G+1 = S(0, αF)+Favg,G (45) 

Favg, G is the location parameter of the Stable distribution, denoting 
the average value of the data stored in the F_Accumulate. The value of αF 
is set 0.1. Similarly, stable distribution adapts CRi in accordance to the 
average value of CRi. In the case CRi< 0.1 or CRi > 1, it is truncated to 
0.1 and 1, respectively. 

The following describes how the adaptation is performed on cross-
over rate (αCR): 

CRi,G+1 = S(0, αCR)+CRavg,G (46) 

CRavg, G is the location parameter of the Stable distribution, denoting 
the average data value that stored in the CR_Accumulate. The value of 
αCR is set 0.1. The MADE algorithm is described as follows. 

Assess the initial population 
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for i = 0 : NP  

Fi = 0.5  

CRi = 0.9  

end 

WHILE The stop criterion is not met 

for i = 0 : NP 

Generation of mutant vector V1, G. 
Selection of three donor vectors Xr1, Xr2, Xr3 randomly 

vG+1
i = XG

r + F
(
XG

b − XG
w

)

end  

for i = 0 : NP  

jrand = int(rand[1,D] )

for j = 1 : D  

uj
i,G =

⎧
⎨

⎩

vj
i,G, if

(
randj[0, 1) ≤ CR

)
or (j == jrand)

xj
i,G, otherwise  

end  

end  

k = 0  

for i = 0 : NP  

if f
(
U1,G

)
≤ f

(
X1,G

)

X1, G+1 = U1, G, F_Accumulate [k] = F1, CR_Accumulate [k] = CR1 

k+ +

else X1,G+1 = X1,G  

end  

end 

Favg, G = mean(F_Accumulate), CRavg, G = mean(CR_Accumulate) 

for i = 0 : NP  

F1,G+1 = S(0,αF)+Favg,G  

CR1,G+1 = S(0, αCR)+CRavg,G  

end  

end  

5.3. Application of the algorithm in problem-solving 

The general approach includes the following steps: 
Step 1: Input data collection: This information consists of the 

microgrid and generation unit data, PHEV parameters, parameters of 
PEMFC-CHP, the DE algorithm, opportunistic termination criteria, pa-
rameters of uncertainty with their PDFs. 

Fig. 5. the microgrid operation management flowchart by considering the PHEV modeling.  
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Step 2: Calculation of the PHEVs hourly charging: According to the 
class of a PHEV, the following items are determined: battery capacity, 
types of chargers, three diverse charging cases of PHEVs, and PHEVs 
hourly demand of any scheme (among two uncontrolled and smart 
charging strategies). This study uses the data of MCS for random selec-
tion among different parameters of PHEVs. 

Step 3: Initial population generation: As expressed in Eq. (27), the 
probable solution of the problem can be any individual of the 
population. 

Step 4: Objective function calculation: As described in Eq. (26), the 
total network cost is the objective function. By MCS for any individual of 
the population in the DE algorithm, the expected value of the cost 
function can be computed. 

Step 1: Reading the data of system in addition to its parameters 
adjustment. 

Step 5: Development of the next generation using mutation and 
crossover operations in the MADE algorithm. 

Step 6: Analysis the boundary of ranges. 
Step 7: Display results. 
Fig. 5 depict the introduced method diagram. 

6. Simulation results 

In this section, The DE algorithm is adopted for optimal management 
of a test microgrid operation. The analysis of the test network is per-
formed each hour. The planning horizon for the test microgrid is 
considered 24 h. 

6.1. Data input 

This subsection provides the data related to the test microgrid. The 
diagram of this test system is illustrated in Fig. 6. It is assumed that PV 
and WT outputs in the test system are available maximally. This is a 

mandatory and incentive policy to support PV and WT because this 
equipment should start to generate power after the first financial 
investment. 

As is shown in Fig. 6, a 400 V microgrid is considered as test system 
which is linked to the main grid by three feeders and various sorts of 
DGs, and loads as well as a NiMH battery are included. For the afore-
mentioned system, a 24-hour period of time is considered for running 
the simulation, and Fig. 7 and Table 2 provide proposals and limitations 
of DGs, hourly predicted output power of PV and WT, hourly estimated 
demand, hourly market price, values of problem parameters in addition 
to the algorithms. It is noteworthy that in order to compare the per-
formance of the suggested strategy with other methods of this field, the 
proposed 24-h programming is given. However, the analysis duration 
can be extended to week, month or year in practical analysis. In fact, by 
increasing the analysis time window in the structure of the problem or 
solution, no limit or changes appear. In this microgrid, it is assumed that 
the battery is charged infinitely and all DGs are serving over the 24-h 
period. The proposed model is a MINLP problem that has been solved 
in the script m-file of MATLAB software (R2016a- 64 bit) and an Intel(R) 
Core(TM) i5-7400 CPU @ 3.00GHz processor with 4 GB RAM is used to 
run the program. 

6.2. The proposed method evaluation 

This section evaluates results of the suggested method and other 
methods simulation. It should be noted that the effects of EV chargers, 
the related uncertainties, the impact of PEMFC-CHP, and heat load are 
not taken into account for the test microgrid. The MADE algorithm re-
sults and that of other popular algorithms are reported in Table 3 for a 
better comparison. In this case, 20 series repetition of simulation results 
are performed; the best, worst and the average solutions are compara-
tively illustrated. Based on Table 3, the high performance of the sug-
gested MADE algorithm is clearly observable. The MADE algorithm can 

Fig. 6. Test microgrid single-line diagram.  
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achieve solutions which are close to the optimal solution; this is not the 
case in other methods. Looking more closely into this Table, it can be 
inferred that MADE algorithm has a better performance compared with 
DE algorithm. For observing the convergence capability of the MADE 
algorithm in this scenario, the convergence curve of this algorithm is 

depicted in Fig. 8. Based on this curve, the proposed MADE algorithm 
can converge in the first steps of iterations. The desirable performance of 
the MADE algorithm compared to well-known methods has been illus-
trated so far in this paper. 

As explained, to improve the local and global search capability of the 
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Fig. 7. Market price, consumption load demand [39,40], WT and PV outputs-related estimated values [6].  
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DE algorithm, a new adaptive modification strategy was applied in this 
study. According to Table 3, it is obvious that employing adaptive 
crossover and mutation technique not only accelerates the convergence 
of the DE, but also enables it to alleviate the stagnation and escape from 
local optima, so the value of objective function related to MADE is the 
most accurate value. As the MADE results, the number of global optimal 
convergences for 20 trials was 20. Therefore, standard deviation is equal 
to zero. Thus, MADE can be operated as a powerful and reliable algo-
rithm. Other advantages of the MADE algorithm over DE are lower 
number of iterations and less processing time. 

6.3. The proposed programming problem results for different scenarios 

The analysis and comparison of simulation results for four different 
scenarios is discussed in this section. In these scenarios, PHEVs charging 
demand is considered. For PHEVs in this microgrid, the penetration level 
of 30% is considered in this paper from 70 vehicles. Moreover, the un-
certainty of the problem is modeled by MCS. Thereby, MCS is applied to 

Table 2 
Parameter values that affect the problem simulation.  

Parameter Value 

Maximum iteration 1000 
Min, max power of PV 0, 25 (KW) 
Min, max power of WT 0, 15 (KW) 
Min, max power of FC (PEMFC) 3, 30 (KW) 
Min, max power of MT 6, 30 (KW) 
Min, max power of battery − 30, 30 (KW) 
Min, max power of utility − 30, 30 (KW) 
Thermal load demand 30 (KW) 
Bid of PV 2.584 (€ct/KWh) 
Bid of WT 1.073 (€ct/KWh) 
Bid of FC (PEMFC) 0.294 (€ct/KWh) 
Bid of MT 0.457 (€ct/KWh) 
Bid of Battery 0.380 (€ct/KWh) 
Bid of hydrogen pumping 0.909 (€ct/KWh) 
Bid of natural gas for parallel boiler 4.545 (€ct/KWh) 
Hydrogen selling price 163.6 (€ct/Kg) 
Start-up/shut-down cost of PEMFC 1.65 (€ct) 
Start-up/shut-down cost of MT 0.96 (€ct) 
Maximum DOD 80% 
Pcharge,max 30 (KW) 
Pdischarge,max 30 (KW) 
H 90% 
ηcharge 90% 
ηdischarge 90% 
Δt 1  

Table 3 
The performance comparison of the suggested algorithm and other algorithms 
presented to solve the problem in the main case without considering PHEV, 
thermal load, hydrogen storage and CHP.  

Method Best 
solution 
(€ct) 

Worst 
solution 
(€ct) 

Average 
(€ct) 

Standard 
deviation 
(€ct) 

Mean 
run time 
(s) 

GA. [41] 277.75 304.59 290.44 13.45 – 
PSO.  

[41] 
277.33 303.38 288.88 10.19 – 

FSA- 
PSO.  
[41] 

276.79 291.76 280.69 8.34 – 

C-PSO-T. 
[41] 

275.05 286.55 277.41 6.24 – 

AM-PSO- 
T. [41] 

274.75 281.12 276.34 5.97 – 

AM-PSO- 
L. [41] 

274.56 275.10 274.99 0.33 – 

DE 272.7203 274.2304 273.3467 0.8340 72.321 
MADE 269.7607 269.7607 269.7607 0.0000 58.623  

Fig. 8. Suggested algorithm convergence curve.  

Table 4 
Optimum output power of units with PHEV uncontrolled charging in absence of 
PEMFC, CHP, thermal load and hydrogen storage.  

Time 
(h) 

Electrical generation (KW) 

PV WT FC MT Battery Utility 

1  0.0000  1.7850  3.0000  6.0000  − 30.0000  81.2950 
2  0.0000  1.7850  3.0000  6.0000  − 30.0000  76.4150 
3  0.0000  1.7850  3.0000  6.0000  − 30.0000  72.0950 
4  0.0000  1.7850  3.0000  6.0000  − 30.0000  71.9550 
5  0.0000  1.7850  3.0000  6.0000  − 30.0000  76.6550 
6  0.0000  0.9150  3.0000  6.0000  − 30.0000  83.0850 
7  0.0000  1.7850  3.0000  6.0000  − 30.0000  89.2150 
8  0.2000  1.3050  30.0000  6.0000  21.3830  16.1120 
9  3.7500  1.7850  30.0000  30.0000  30.0000  − 19.5350 
10  7.5250  3.0900  30.0000  30.0000  30.0000  − 20.6150 
11  10.4500  8.7750  30.0000  28.7750  30.0000  − 30.0000 
12  11.9500  10.4100  30.0000  21.6400  30.0000  − 30.0000 
13  23.9000  3.9150  30.0000  14.1850  30.0000  − 30.0000 
14  21.0500  2.3700  30.0000  18.5800  30.0000  − 30.0000 
15  7.8750  1.7850  30.0000  30.0000  30.0000  42.4800 
16  4.2250  1.3050  30.0000  30.0000  30.0000  105.2500 
17  0.5500  1.7850  30.0000  30.0000  30.0000  55.9450 
18  0.0000  1.7850  30.0000  6.0000  30.0000  60.4950 
19  0.0000  1.3020  30.0000  6.0000  − 30.0000  99.9780 
20  0.0000  1.7850  30.0000  6.0000  30.0000  36.4950 
21  0.0000  1.3005  30.0000  30.0000  30.0000  2.5395 
22  0.0000  1.3005  30.0000  30.0000  30.0000  − 5.9005 
23  0.0000  0.9150  30.0000  6.0000  − 30.0000  69.6050 
24  0.0000  0.6150  3.0000  6.0000  − 30.0000  86.4650  
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consider the uncertainties of the PHEVs charging demand. As noted, two 
diverse charging modes, namely, uncontrolled and smart charging 
strategies are considered for PHEVs. In these scenarios, uncontrolled and 
smart charging strategies are adopted. Since the PHEVs charger demand 
is overload for the microgrid, the upstream network-related maximum 
power capacity changes from 30 kW to 120 kW, as Table 2. The rest of 
the data is maintained as before. This change in the network range is 
essential for increasing the maximum capacity of power generation in 
this solution. Without this modification in the network specification, the 
microgrid cannot supply the PHEV charger demand. Indeed, the first 
diagram of the test microgrid along with its constraints is considered for 
the baseload. New changes should be applied to the microgrid if new 
loads like PHEVs are considered. As the grid maximum capacity has 
altered, results of simulation are considered in this case. Also, the FC 
model is changed to PEMFC in the last two scenarios of the test micro-
grid, where the heat load, hydrogen storage strategy, and simultaneous 
electricity and heat energy generation are taken into account as well. 
The results of these four scenarios are presented as follows: 

6.3.1. First scenario: considering the PHEV with uncontrolled charger 
strategy and not considering the PEMFC and CHP models 

With respect to results of simulation in Table 4, within the initial 
hours with the low cost of the main grid, the battery would be charged 
and the expensive microgrid output decreases. Moreover, the battery is 
discharged completely during the peak hours, local generation becomes 
maximum, and the main grid purchases a great deal of energy so that the 
total cost of the microgrid is decreased. Considering the MT high oper-
ating cost, it is programmed in a way that it operates at its lowest power 
during the early hours of the day when the price of energy is low. All in 
all, by increasing the purchased power cost from 9:00 to 17:00, the 
output of MT increases as well. This is an economic policy to optimize 
the microgrid cost. As the cost of FC power generation is low, the MGCC 
decides to utilize the FC maximum capacity for supplying power. 

Based on Table 4, increasing the purchased power amount from the 
main grid and energy storage in the battery during the off-peak period 
can supply the PHEVs uncontrolled charge demand. That is, because of 

the high power cost, the MT does not play a key role in the microgrid 
operation. Fig. 9 specifies the generation of each of the DGs. The 
desirable performance of the MADE algorithm compared to well-known 
methods in this scenario has been illustrated in Table 5. 

6.3.2. Second scenario: considering the PHEV with smart charging strategy 
without considering the PEMFC and CHP models 

Simulation results of PHEVs smart charging are reported in Table 6. 
In this case, the MT turns off in several hours and overload can be fed 
through the main grid. The positive impact of smart charging plans in 
this energy demand management of PHEVs can be vividly proved by 
lower total microgrid cost in this operational situation. 

The comparison made between uncontrolled and smart charging 
strategies in Tables 4 and 6 shows that, the microgrid cost increases in 
the uncontrolled mode during peak load hours (15:00–17:00) when the 
main grid sells energy. On the other side, more energy is purchased 
during off-peak hours (1:00–4:00) in the smart mode, which plays a role 
in reducing the microgrid cost. Fig. 10 depicts the amount of power 
generation by individual DGs. Table 7 illustrates the desirable perfor-
mance of the MADE algorithm compared to well-known methods in this 
scenario. 
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Fig. 9. Produced power of units with PHEV uncontrolled charging in absence of PEMFC, CHP, thermal load and hydrogen storage.  

Table 5 
The performance comparison of the suggested algorithm and other algorithms 
presented to solve the problem in the first scenario.  

Method Best 
solution 
(€ct) 

Worst 
solution 
(€ct) 

Average 
(€ct) 

Standard 
deviation 
(€ct) 

Mean 
run time 
(s) 

GA. 708.62 776.35 740.41 34.15 90.348 
PSO. 707.43 773.83 737.15 23.21 89.973 
TLBO. 705.82 743.51 713.78 21.12 84.422 
DE 695.33 701.05 698.19 2.022 74.146 
MADE 687.8670 689.07321 688.1082 0.4432 61.245  

Table 6 
Optimum output power of units by PHEV smart charging in absence of PEMFC, 
thermal load, hydrogen storage and CHP.  

Time 
(h) 

Electrical generation (KW) 

PV WT FC MT Battery Utility 

1  0.0000  1.7850  3.0000  6.0000  − 30.0000  98.5550 
2  0.0000  1.7850  3.0000  6.0000  − 30.0000  108.0550 
3  0.0000  1.7850  3.0000  6.0000  − 30.0000  119.5550 
4  0.0000  1.7850  3.0000  6.0000  − 30.0000  97.5550 
5  0.0000  1.7850  3.0000  6.0000  − 30.0000  89.6150 
6  0.0000  0.9150  3.0000  6.0000  − 30.0000  96.0450 
7  0.0000  1.7850  3.0000  6.0000  − 30.0000  96.4150 
8  0.2000  1.3050  30.0000  6.0000  − 30.0000  74.6950 
9  3.7500  1.7850  30.0000  30.0000  30.0000  − 16.6550 
10  7.5250  3.0900  30.0000  30.0000  30.0000  − 17.7350 
11  10.4500  8.7750  30.0000  30.0000  30.0000  − 29.7850 
12  11.9500  10.4100  30.0000  21.6400  30.0000  − 30.0000 
13  23.9000  3.9150  30.0000  14.1850  30.0000  − 30.0000 
14  21.0500  2.3700  30.0000  18.5800  30.0000  − 30.0000 
15  7.8750  1.7850  30.0000  30.0000  30.0000  − 23.6600 
16  4.2250  1.3050  30.0000  30.0000  30.0000  − 15.5300 
17  0.5500  1.7850  30.0000  30.0000  30.0000  − 7.3350 
18  0.0000  1.7850  30.0000  6.0000  30.0000  20.2150 
19  0.0000  1.3020  30.0000  6.0000  − 30.0000  82.6980 
20  0.0000  1.7850  30.0000  6.0000  30.0000  19.2150 
21  0.0000  1.3005  30.0000  30.0000  30.0000  1.0795 
22  0.0000  1.3005  30.0000  30.0000  30.0000  31.4595 
23  0.0000  0.9150  30.0000  6.0000  − 22.8950  120.0000 
24  0.0000  0.6150  19.7850  6.0000  − 30.0000  120.0000  
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6.3.3. Third scenario: considering the PHEV with smart charging strategy 
and applying the PEMFC model without considering the CHP 

In this scenario, in addition to considering the previous scenario 

conditions, the heat load is added to the test microgrid and the FC model 
is changed to PEMFC. The data of these assumptions are reported in 
Table 2 and the single-line diagram is shown in Fig. 11. Under such 
conditions, the heat energy presented for supplying heat loads is sup-
plied through conventional boilers. Moreover, it is assumed that active 
power is generated by DGs, and the CHP implications on PEMFCs are 
neglected. During optimal conditions for hydrogen storage, the amount 
of hydrogen generation varies in the range of (0, d), where d represents 
the difference between the PEMFC maximum capacity and the power 
generation at each hour. Simulation results are provided in Table 8 and 
Fig. 12. Here, the total microgrid cost increases because of supplying the 
heat load by boilers, and the generation by MT becomes justifiable. 
Furthermore, taking into consideration the sale of excessive hydrogen, 
the amount of power generation by PEMFC rises during the first hours. 
Table 9 shows performance of the MADE algorithm compared to well- 
known methods in this scenario 
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Fig. 10. Produced power of units by PHEV smart charging in absence of PEMFC, thermal load, hydrogen storage and CHP.  

Table 7 
The performance comparison of the suggested algorithm and other algorithms 
presented to solve the problem in the second scenario.  

Method Best 
solution 
(€ct) 

Worst 
solution 
(€ct) 

Average 
(€ct) 

Standard 
deviation 
(€ct) 

Mean run 
time (s) 

GA. 358.86 394.67 375.01 17.36 93.253 
PSO. 358.12 391.58 373.17 12.06 92.186 
TLBO. 357.47 376.72 361.75 11.52 86.427 
DE 351.27 355.18 353.23 1.382 75.291 
MADE 347.5401 347.6521 347.5625 0.0412 63.427  

Fig. 11. Test network single-line diagram with thermal load.  
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6.3.4. Fourth scenario: considering the PHEV with smart charging strategy 
and applying the PEMFC model considering CHP 

Here, the CHP impact on PEMFC is taken into account, where the 
amount of heat produced by PEMFC for supplying the heat load is 
consumed at each hour and the remaining demand of heat load is fed by 
the boiler in case of necessity. Simulation results are reported in 
Table 10 and Fig. 13. As is seen from the results, considering the 
simultaneous electricity and power generation, the generation of PEMFC 
has increased. Also, the utilization of this operation mode of PEMFC 

units has increased the profit, reduced the microgrid cost, and reduced 
the use of fossil fuels for supplying the heat load. Table 11 shows 
desirable performance of the MADE algorithm compared to well-known 
methods in this scenario. Considering Tables 5, 7, 9 and 11, it is clear 
that the STD of MADE has a negligible value rather than other algo-
rithms which also confirms the reliability of the proposed method. It is 
notable that solving the problem in scenarios 1e4 is more complicated 
than in the main case because in these scenarios there are more complex 
constraints. Tables 5, 7, 9 and 11 also express the inadequacy of the DE 
and other known methods for this problem. It can be concluded that for 
more complicated optimization problems, the usefulness of the proposed 
crossover and mutation technique is more impressive. Table 12 com-
pares the values of the objective function for all mentioned scenarios. As 
is observed, the smart charging strategy reduces the microgrid cost 
compared to uncontrolled charging. Besides, considering the heat load 
of the microgrid, the cost has increased but the use of the PEMFC-CHP 
strategy significantly reduces the microgrid cost. 

7. Conclusions 

This study analyzes the PHEV charging demand implications on the 

Table 8 
Optimum output power of units by PHEV smart charging with PEMFC, thermal load, hydrogen storage in absence of CHP.  

Time (h) Electrical generation (KW) Hydrogen storage (KW) 

PV WT PEMFC MT Battery Utility Entering Usage Saving 

1  0.0000  1.7850  30.0000  30.0000  30.0000  − 12.4450  0.0000  0.0000  0.0000 
2  0.0000  1.7850  23.7996  25.4516  − 1.3386  39.1424  0.0000  0.0000  0.0000 
3  0.0000  1.7850  30.0000  20.1179  1.5044  46.9327  0.0000  0.0000  0.0000 
4  0.0000  1.7850  3.0000  6.0000  − 30.0000  97.5550  15.4819  0.0000  15.4819 
5  0.0000  1.7850  3.0000  6.0000  − 30.0000  89.6150  0.0000  5.4082  10.0737 
6  0.0000  0.9150  10.5263  28.3260  11.4569  24.7358  7.3465  6.3358  11.0845 
7  0.0000  1.7850  24.1179  10.6143  10.7907  29.8921  5.8821  7.1341  9.8325 
8  0.2000  1.3050  12.8783  6.0000  16.7836  45.0331  0.0000  4.6784  5.1542 
9  3.7500  1.7850  30.0000  30.0000  30.0000  − 16.6550  0.0000  0.0000  5.1542 
10  7.5250  3.0900  30.0000  29.0386  30.0000  − 16.7736  0.0000  0.0000  5.1542 
11  10.4500  8.7750  30.0000  30.0000  29.1362  − 28.9212  0.0000  1.5457  3.6085 
12  11.9500  10.4100  21.6400  30.0000  30.0000  − 30.0000  0.0000  0.0000  3.6085 
13  23.9000  3.9150  5.2305  6.0000  29.6135  3.3410  11.9355  7.5668  7.9772 
14  21.0500  2.3700  30.0000  27.9269  20.6531  − 30.0000  0.0000  7.9772  0.0000 
15  7.8750  1.7850  30.0000  30.0000  30.0000  − 23.6600  0.0000  0.0000  0.0000 
16  4.2250  1.3050  30.0000  25.6944  30.0000  − 11.2244  0.0000  0.0000  0.0000 
17  0.5500  1.7850  22.7946  6.0000  12.2839  41.5865  7.2054  0.0000  7.2054 
18  0.0000  1.7850  3.0000  6.0000  − 30.0000  107.2150  0.0000  5.4124  1.7930 
19  0.0000  1.3020  6.5855  13.1395  − 30.0000  98.9730  5.1794  0.0000  6.9724 
20  0.0000  1.7850  3.0000  6.0000  − 13.0710  89.2860  2.1209  4.0103  5.0831 
21  0.0000  1.3005  3.5094  30.0000  17.3160  40.2540  3.6954  0.0000  8.7785 
22  0.0000  1.3005  3.0000  21.5379  16.0484  80.8732  4.6572  2.6093  10.8265 
23  0.0000  0.9150  25.3643  30.0000  − 25.8701  103.6108  2.1733  2.8049  10.1948 
24  0.0000  0.6150  30.0000  30.0000  15.8328  39.9522  0.0000  5.7125  4.4823  
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Fig. 12. Produced power of units by PHEV smart charging with PEMFC, thermal load, hydrogen storage in absence of CHP.  

Table 9 
The performance comparison of the suggested algorithm and other algorithms 
presented to solve the problem in the third scenario.  

Method Best 
solution 
(€ct) 

Worst 
solution 
(€ct) 

Average 
(€ct) 

Standard 
deviation 
(€ct) 

Mean run 
time (s) 

GA. 4010.34 4397.34 4190.85 192.63 94.415 
PSO. 4002.25 4379.46 4170.43 144.21 93.863 
TLBO. 3994.35 4210.14 4041.62 119.32 88.152 
DE 3933.21 3960.43 3946.8 9.624 76.103 
MADE 3891.4 3893.6 3892.1 0.9382 66.142  
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conventional microgrids-related optimum operation management, 
which use diverse renewable sources like PV, FC, WT, and MT. Besides, 
batteries have been used to demonstrate the storage positive influence 
on microgrid expenditures. According to this, two diverse charging 
methods, i.e. uncontrolled and smart charging, were studied. The results 
of a test system simulation indicate the better performance of the sug-
gested MADE algorithm compared to several other well-known methods 
in this field. It has been demonstrated that although the demand for 

PHEV charging can intensify the overall microgrid cost, a smart charging 
method is able to significantly decrease its overall influences. Indeed, 
applying smart charging may lead to further cost savings compared to 
uncontrolled charging plans. Also, using the PEMFC-CHP model in-
creases profits, reduces microgrid costs, and reduces fossil fuel use to 
feed the heat demand thanks to simultaneous electricity and heat gen-
eration. Additionally, optimum and coordinated programming of RERs 

Table 10 
Optimum output power of units by PHEV smart charging with PEMFC, thermal load, hydrogen storage in addition to CHP.  

Time (h) Electrical generation (KW) Hydrogen storage (KW) 

PV WT PEMFC MT Battery Utility Entering Usage Saving 

1  0.0000  1.7850  29.2346  12.6725  25.7813  9.8666  0.0000  0.0000  0.0000 
2  0.0000  1.7850  29.7936  30.0000  30.0000  − 2.7386  0.2064  0.2064  0.0000 
3  0.0000  1.7850  30.0000  12.9599  30.0000  25.5951  0.0000  0.0000  0.0000 
4  0.0000  1.7850  30.0000  30.0000  21.4511  − 4.8961  0.0000  0.0000  0.0000 
5  0.0000  1.7850  30.0000  30.0000  30.0000  − 21.3850  0.0000  0.0000  0.0000 
6  0.0000  0.9150  30.0000  30.0000  16.9738  − 1.9288  0.0000  0.0000  0.0000 
7  0.0000  1.7850  27.3529  25.8606  − 7.8996  30.1012  2.6471  0.0000  2.6471 
8  0.2000  1.3050  30.0000  30.0000  30.0000  − 9.3050  0.0000  2.1082  0.5389 
9  3.7500  1.7850  30.0000  16.4947  27.8400  − 0.9897  0.0000  0.0000  0.5389 
10  7.5250  3.0900  30.0000  30.0000  30.0000  − 17.7350  0.0000  0.4092  0.1297 
11  10.4500  8.7750  21.0923  29.7785  30.0000  − 20.6558  2.2449  2.2449  0.1297 
12  11.9500  10.4100  29.1448  30.0000  22.4952  − 30.0000  0.0000  0.0000  0.1297 
13  23.9000  3.9150  30.0000  30.0000  − 27.8613  12.0463  0.0000  0.0000  0.1297 
14  21.0500  2.3700  28.6204  29.6098  0.5046  − 10.1548  1.3796  1.3796  0.1297 
15  7.8750  1.7850  30.0000  29.1855  7.1125  0.0421  0.0000  0.1297  0.0000 
16  4.2250  1.3050  30.0000  27.1365  24.6964  − 7.3629  0.0000  0.0000  0.0000 
17  0.5500  1.7850  30.0000  9.8388  30.0000  12.8262  0.0000  0.0000  0.0000 
18  0.0000  1.7850  30.0000  30.0000  − 0.8046  27.0196  0.0000  0.0000  0.0000 
19  0.0000  1.3020  30.0000  30.0000  30.0000  − 1.3020  0.0000  0.0000  0.0000 
20  0.0000  1.7850  29.5836  23.5821  9.3367  22.7126  0.4164  0.0000  0.4164 
21  0.0000  1.3005  24.5534  25.8009  30.0000  10.7252  0.0000  0.4164  0.0000 
22  0.0000  1.3005  30.0000  13.9688  − 19.5720  97.0627  0.0000  0.0000  0.0000 
23  0.0000  0.9150  3.0000  6.0000  21.9418  102.1632  0.8290  0.3923  0.4367 
24  0.0000  0.6150  19.1183  30.0000  21.3324  45.3343  3.7954  0.5418  3.6904  
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Fig. 13. Produced power of units by PHEV smart charging with PEMFC, thermal load, hydrogen storage in addition to CHP.  

Table 11 
The performance comparison of the suggested algorithm and other algorithms 
presented to solve the problem in the fourth scenario.  

Method Best 
solution 
(€ct) 

Worst 
solution 
(€ct) 

Average 
(€ct) 

Standard 
deviation 
(€ct) 

Mean run 
time (s) 

GA. 1105.42 1210.64 1155.16 53.26 96.241 
PSO. 1103.61 1206.45 1149.85 39.27 94.192 
TLBO. 1101.23 1160.72 1114.31 32.14 90.352 
DE 1079.64 1091.24 1085.4 4.101 79.533 
MADE 1068.9 1070.5 1069.4 0.6823 68.968  

Table 12 
Comparison among costs of proposed scenario results and that of other ones.  

Scenario Total cost 
(€ct) 

Without PHEV, thermal load, hydrogen storage and CHP 269.7607 
With uncontrolled charging of PHEV, without considering thermal 

load, hydrogen storage and CHP 
687.8670 

With smart charging of PHEV, without considering thermal load, 
hydrogen storage and CHP 

347.5401 

With smart charging of PHEV, thermal load, hydrogen storage and 
without considering CHP 

3891.4 

With smart charging of PHEV, thermal load, hydrogen storage and 
CHP 

1068.9  
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and heat units of microgrids improves the objective functions results. By 
increasing the total profit of participation in the electricity market 
through the application of the proposed method, the performance of this 
algorithm will be more superior to other methods. Finally, it should be 
noted that, in general, the results have validated the suggested method 
and its satisfactory performance in the microgrid management has been 
proved. 

However, there are still a few issues that can be explored in future 
work, including the study of microgrid reliability indicators in the 
presence of the studied model. Other objective functions such as pollu-
tion reduction and network security constraints can also be considered. 
The effect of the PHEV on the dynamic behavior of the microgrid can 
also be studied as one of the topics in the future. Also, the role of the 
PHEV can be promoted as a source of distributed generation in the do-
mestic microgrids. Optimal placement of PHEV charging stations and 
PEMFC-CHP units simultaneously in a standard IEEE test system can also 
be investigated as another topic for future studies. 
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