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Abstract
Much attention has recently been paid to the issue of progressive collapse, which is associated with the uncertainties that may 
affect the accurate assessment of the safety of the structures. Probabilistic analysis can be used to quantify the probabilistic 
safety of structures under extreme loadings. Since the columns play a key role in the stability of the structures subjected to 
the progressive collapse and they are very prone to failure, this research focuses on estimation of the failure probability in 
these structural elements. Monte Carlo simulation is used to perform the probabilistic analysis in a steel structure. The ratio 
of the axial force demand to the inelastic buckling capacity in columns adjacent to the damaged column is considered as the 
implicit limit state function. Artificial neural network and response surface methods are used to estimate an explicit function 
to save computational time. The results obtained from this study can be used to rehabilitate damaged structures using the 
effective role of each random variable on the structural responses which have been determined by the sensitivity analysis.

Keywords Progressive collapse · Failure probability · Response surface method · Artificial neural network · Sensitivity 
analysis

1 Introduction

Progressive collapse is the local damage to the structure so 
leads to partial or general failure due to reduction in stiff-
ness of the structural members. Damage can be caused by 
unusual loads such as gas explosion, vehicle collision, fire 
and human error in the design and construction of structures 
(Ellingwood and Dusenberry 2005).

Extensive research has been conducted on the progres-
sive collapse of the structures in recent years. One of the 
most important goals of the progressive collapse analysis is 
the evaluation of the vulnerability of the structural systems 
to locate the damage (Gerasimidis 2014). In many studies, 
an alternative load path (ALP) method proposed by design 
regulations (Pioldi et al. 2017; Xia and Brownjohn 2004) is 

used for assessment the collapse behavior of the structures. 
In the APM, the ability of the remaining structures is inves-
tigated to transfer gravity loads to the ground by removing a 
vertical load-bearing structural member. Fu (2013) examined 
the collapse of building structures due to creation of high 
shear forces resulting from the removal of columns using 
the APM. Nica et al. (2018) carried out a numerical analysis 
on progressive collapse of the irregular structures due to 
the blast. They considered a demolition scenario in columns 
to illustrate the effective operation of the applied element 
method in the redistribution of the load after the failure in 
the columns. Their result showed that the structures were 
sufficiently resistant to the progressive failure due to seismic 
design. Tavakoli and Alashti (2013) evaluated the potential 
of the progressive collapse in the multi-story moment resist-
ing steel frame buildings subjected to the lateral loading. 
Tavakoli and Kiakojouri (2014) proposed several methods 
to prevent the spread of damage using the concept of robust-
ness. Also, they (2015) evaluated the role of initial failure 
location and the number of floors for the potential of the 
progressive collapse in the structures. Tavakoli and Moradi 
(2014) assessed the potential of the progressive failure in 
retrofitted structures which are damaged before. Tavakoli 
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et al. (2015) conducted a progressive collapse analysis on 
the structural frames to evaluate resistance of the structure 
under seismic progressive failure. They adopted a method 
that localized failures and prevented the spread of damage 
to the intact spans. Tavakoli and Hasani (2017) assessed the 
effects of different characteristics of the seismic excitations 
on the potential of the seismic progressive collapse in the 
steel special moment resisting frame structures. Tavakoli and 
Moradi (2018) investigated the potential of the structures 
against the progressive failure using a robustness index for 
structures with different lateral load-bearing systems. They 
proposed a simple energy-based method for conducting 
robustness analysis. Recently, Biagi et al. (2020) proposed 
a simplified method for the assessment of the frame struc-
tures subjected to sudden column removal, accounting the 
dynamic effects that raise. This can provide an interesting 
insight into the methods. Karimiyan (2020) proposed a col-
lapse distribution pattern for the structural elements under 
the removal of the internal column to predict the progress of 
progressive collapse caused by seismic loads. Mehdizadeh 
et al. (2020) assessed the sidesway collapse capacity of steel 
moment-resisting frames under seismic loads. The results 
of their study showed that special steel moment-resisting 
frames have a larger collapse capacity than intermediate and 
ordinary moment-resisting frames. In the assessment carried 
out by Agarwal and Varma (2014), the effective role of the 
columns was identified in maintaining the stability of the 
structure under the fire event. The first buckling that happens 
in damaged columns can be checked to control the stability 
of the damaged structure (Pantidis and Gerasimidis 2017). 
Gerasimidis et al. (2015) investigated collapse mechanisms 
due to loss of stability in the columns under progressive fail-
ure. The results of their evaluation showed that two adjacent 
columns buckled at the level of the load less than the design 
load with the removal of a corner column in the structure. 
After failure of these two columns, the buckling instantly 
occurred in the next two adjacent columns. Finally, the entire 
structure collapsed without making significant plastics in the 
structural system after the collapse of the five columns. Their 
work showed that there is a strong relationship between the 
loss of stability in structural system and the phenomenon of 
the progressive failure. Jiang and Chen (2012) proposed a 
method for evaluating the safety of the structures that can be 
identified by key element in the structure under the progres-
sive collapse. They found that this method can predict the 
structural vulnerability.

In previous studies for assessment of the progressive col-
lapse in the structures, the behavior of the structural collapse 
modes such as instability modes of the columns adjacent to 
the damaged columns was investigated in the form of the 
deterministic analysis. Many engineering problems have 
different uncertainties that may affect the potential of the 
failures in the structures. The most important uncertainties 

are commonly related to the loads and materials. The prob-
ability of the failure in the structures under these uncer-
tainties can be determined by the reliability analysis. Using 
the reliability analysis can also quantify the safety of each 
member of the structure under damage imposed to the struc-
ture. Then, it can be decided whether a structural member 
is to be repaired or replaced (Santosh et al. 2006). In recent 
years, much attention has been devoted to the probabilistic 
assessment of the collapse in the structures (Li et al. 2016; 
Yu et al. 2016). For instance, Felipe et al. (2018) proposed 
a reliability-based approach that can determine the key ele-
ment in the structures under the progressive collapse. So 
that, this recognition can be used for an optimal design with 
the aim of a highly robust structural design. Abdollahzadeh 
and Faghihmaleki (2018) proposed a method for assessing 
the probabilistic risk of the reinforced concrete buildings 
subjected to the two hazards as blast and earthquake loads. 
Izzuddin et al. (2012) assessed the probabilistic risk of the 
steel structures under events that lead to progressive col-
lapse. They consider uncertainties in the hazards that lead to 
local damage in the structure. They used the first-order relia-
bility method (FORM) for estimation of the reliability index 
in the structures. Since this method may be associated with 
a large number of errors and does not take into account non-
linear terms, Chen et al. (2016) suggested a new approach 
to assess the reliability of the steel structures subjected to 
the progressive collapse known advanced FORM that solve 
the limitations of the FORM method. They also proposed an 
analytical model for beam which considers the variation of 
the internal energy in the beam above the removed column. 
Finally, they presented a method for calculating a robustness 
index based on the acceptable probability of failure for struc-
tures under the progressive collapse. Moradi et al. (2019) 
conducted a probabilistic assessment on the collapse time 
of a steel structure under fire event. They also estimated the 
probability of failure of an intact structure and a previously 
damaged structure for a specified failure time under fire. 
Moradi et al. (2020) also conducted a sensitivity analysis on 
the failure time of the concrete structures under post-earth-
quake fire. Javidan et al. (2018) examined the probabilistic 
responses of the steel structures subjected to the collision of 
vehicles. They used the neural network methodology along 
with integration-Gauss technique for performing the reliabil-
ity analysis. Their results showed that the structure is more 
vulnerable when the corner column is subjected to the col-
lision of vehicles. They also concluded that the probability 
of exceeding different damage states is greater in the weak 
axis of the structure under removal of the column.

Various methods such as artificial neural networks (ANN) 
and response surface method (RSM) can be used to obtain the 
probability of the collapse of the structures which is required 
to carry out a large number of finite element analysis. There-
fore, these methods can be used instead of a large number of 
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traditional finite element analysis to save the computational 
time. When the nonlinearity in the structural model is very 
high, the neural network can estimate the structural responses 
with less error using the activation functions (Javidan et al. 
2018) compared to the functions used in the response surface 
method. The probabilistic safety of a structural system is eval-
uated by considering two components including the applied 
load and the strength of each member. To determine the behav-
ior of a structure, an explicit equation is required based on 
random variables that are characterized by their probability 
distribution. Safety assessment method with implicit func-
tions can be simplified to obtain an explicit limit state function. 
This function can be determined by fitting a surface using the 
response surface method. This method significantly reduces 
the time of calculation of the structural responses (Freudenthal 
et al. 1966). An artificial neural network (ANN) is also very 
effective in the engineering research for the estimation of the 
functions and prediction of the structural behavior in proba-
bilistic evaluation (Šipoš et al. 2013). In ANN, a multilayer 
feed forward approach can be utilized to estimate the implicit 
function using the actual structural responses obtained from 
the finite element analysis methods (Deng et al. 2005). The 
accuracy obtained to estimate the functions in these methods 
is very dependent on the sampling method. The method of 
Latin hypercube sampling can be used to reduce the number of 
samples which is based on the reduction in variance (Ditlevsen 
and Madsen 1996).

The main objective of this study is probabilistic assessment 
of a steel structure with considering the uncertainty param-
eters for buckling modes appeared in the columns adjacent to 
the damaged column due to progressive collapse. Assessment 
of collapse under abnormal conditions is still a controversial 
issue, especially when a reliability analysis is performed. 
Structural analysis under these uncertainty conditions may 
lead to numerical instability or spend a lot of time for conver-
gence of analysis. In the present research, collapse analysis of 
the building structures is performed based on the probabilities 
analysis using Monte Carlo simulation. At first, Monte Carlo 
analysis is performed based on explicit equations derived from 
the response surface method and the responses obtained from 
training the neural network. Then, the most effective uncer-
tainty variable on the structure response is determined using 
sensitivity analysis. A steel special moment frame is used 
under extreme loads to illustrate the application of the meth-
ods mentioned for probabilistic analysis, which has been con-
sidered uncertainties in loadings and features of its materials.

2  Probabilistic Analysis Methods 
with Implicit Functions

A limit state function may not be an algebraic function based 
on the random variables, and it may be composed of response 
quantities obtained from a finite element model. These func-
tions are called implicit limit state functions. When a specific 
function of random variables is not available, various methods 
can be used to estimate the explicit function. The response 
surface method is one of the methods to approximate a close-
form expression for the limit state function. Then, Monte Carlo 
simulation can be performed using the obtained approxima-
tion function, which drastically reduces the computational 
time compared to the case where the limit state functions are 
implicit (Haldar and Mahadevan 2000). Also, Monte Carlo 
simulation based on neural network method is another method 
of probabilistic analysis to deal with implicit functions (Deng 
et al. 2005).

2.1  Response Surface Method (RSM)

In some probabilistic problems, the limit state function g (x) 
cannot be explicitly expressed in terms of the random variables 
X. Response surface methodology (RSM) is used to save the 
cost of computing. This method is used to convert an implicit 
function to an explicit function. Then, the Monte Carlo simula-
tion can be used to predict the probability of the failure with 
the new limit state function. Assuming that y is the response 
variable and the implicit function of the input parameters X, 
then the response surface ŷ is an approximation of this function 
(Goswami et al. 2016; Hariri-Ardebili et al. 2018; Rajashekhar 
and Ellingwood 1993) as:

where ε (x) is an error in the estimation of the response. 
A common method for estimating a response surface is 
the least squares method (LSM). This method is based on 
the setting of response surface coefficients for a situation 
which is the best fit for the data obtained from the finite ele-
ment analysis. The function y is an output quantity which 
is dependent on n input variables X1,… ,Xn . The relation 
between y and the input variables is expressed as follows:

The function f (�, x) depends on the vector 
� =

[

�1, �2 … .�v
]T . These parameters are determined by least 

squares estimation method:

(1)y = f (x) = f̂ (x) + 𝜀(x) → ŷ = f̂ (x)

(2)y = f (�, x)

(3)� =
(

XTX
)−1

XTY
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A first- or second-order polynomial including linear 
expressions, the interaction effect of variables, and quad-
ratic expressions are used to define the limit state function:

Root Mean Square Error (RMSE) is the criteria used to 
assess the quality of the estimation of the function using 
LSM,

where p is the total number of data, y is the actual response 
from the analysis of finite element and ŷi the predicted 
response by the equation estimation of RSM.

2.2  Artificial Neural Network (ANN) Method

For probabilistic analysis, Monte Carlo simulation method 
with a large number of samples is used to evaluate the struc-
tural response. Unlike simplicity, this method has a high 
computational cost due to spending a lot of time. There-
fore, the neural network method can be used as an effec-
tive tool for solving this problem (Cardoso et al. 2008). As 
shown in Fig. 1, the structure of a neural network consists 
of three layers including an input layer, a hidden layer, and 
an output layer. Each layer has its neurons or nodes and 
attachment weights. The number of neurons in the hidden 
layer was fixed by the rule of trial and error. In this way, the 
number of hidden layers was added one by one to get the 
minimum error for the outputs (Sheela and Deepa 2013). 
The results are passed through a nonlinear activation func-
tion (transfer function) for each neuron in the network by 
taking into account the sum of the weighted inputs. These 
functions are used to transfer values from the hidden layer 
to the output layer. In this study, the Hyperbolic Tangent 
sigmoid functions are used based on studies conducted by 

(4)f̂ (𝛽, x) = 𝛽0 +

n
∑

i=1

𝛽ixi +

n−1
∑

i=1

n
∑

i=1+1

𝛽ixixj +

n
∑

i=1

𝛽iix
2

i

(5)RMSE =

√

√

√

√

p
∑

i=1

(ŷi − yi)
2∕p

references (Javidan et al. 2018; Waszczyszyn 1999). The 
tangent sigmoid function is as follows:

For a precise prediction according to the input vector, 
weights and bias should be well balanced. The process of 
obtaining these coefficients is called the training process. 
In this study, a multilayer feed forward network is used 
because of its ability to estimate functions with high non-
linear degree. This network has also been used effectively in 
the past studies related to the probabilistic analysis (Chojac-
zyk et al. 2015; Lagaros et al. 2009). Neural network train-
ing methods are performed using uncertainty parameters in 
the MATLAB ( 2016) program. The structure response is 
obtained by the finite element software OpenSees (Mazzoni 
et al. 2006) with any change in the input parameters. Then, 
the MATLAB program calls the OpenSees responses to 
train the neural network. Finally, the Levenberg–Marquardt 
training algorithm and the number of six hidden neurons are 
used with trial and error method in order to achieve the best 
network performance. 70% of the data is used for training 
network, 15% for validation and 15% for testing data.

3  Progressive Collapse Analysis

In order to evaluate the progressive collapse of the struc-
tures, a push down nonlinear static analysis is carried 
out under gravity loads in an incremental form with two 
exterior and interior column removal scenarios. Gravity 
loads increase in the damaged bays caused by the removal 
of the column until the rotation of beam above the dam-
aged column reaches the limit states. According to the 
work done by Conrath et al. (1999), these limit states 
represent different levels of damage for steel structures 
under extreme loads, which are shown in Table 1. The 
values presented in Table 1 correspond to the rotation 
of the beam in the bays affected by the different damage 
levels. The combination of gravity load considered for 
intact bays is (1.2dead + 0.5live) according to DoD guid-
ance (2017). The gravity load applied to the damaged 

(6)y = f (w.x + b)

(7)f (x) =
2

1 + e−2x
− 1

Fig. 1  Configuration of a neural network model (Javidan et al. 2018)

Table 1  Limit states considered for damaged structures under the 
extreme loads (in radian)

Element type Light Moderate Severe

Beam 0.05 0.12 0.25
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spans should be multiplied by a factor of ΩN to take into 
account the dynamic nature of the progressive collapse 
phenomenon. This factor is calculated as follows:

where �pra is the plastic rotation and �y is the yield rotation. 
The calculation process of these parameters can be found in 
reference (ASCE 2007). After calculating the coefficient ΩN , 
the value of 1.33 is considered for all states in deterministic 
analysis.

(8)ΩN = 1.08 + 0.76∕(�pra∕�y + 0.83)

4  Model Validation for Analysis 
of Progressive Collapse

To validate the progressive collapse analysis, the results 
of the test conducted by Sadek et al. (2010) are used. This 
experiment was performed on the frame having two bays 
and the connection of the Reduced Beam Section (RBS), 
which was subjected to the removal of the middle column. 
Test setup for specimen with RBS is shown in Fig. 2. In 
this setup, diagonal braces with cross section of w14 × 109 
were used to simulate the effects of bracing created by upper 
floors. A hydraulic ram with capacity of 2669 kN was used 
to apply the vertical load to the middle column. Two cross 

Fig. 2  Details of test setup for specimen (Sadek et al. 2010): a failure mode in specimen; b details of RBS connection; c elevation view
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sections of w24 × 94 and w24 × 131 were used for the beams 
and the columns, respectively. The properties of steel materi-
als are presented in Table 2.

The analysis of the model was performed in OpenSees 
software. An elastic perfectly plastic model was used based 
on Table 2. The panel zones were also modeled using a 
diagonal spring. Shear behavior of panel zone was deter-
mined by the stiffness and strength formulated in the work 
of Khandelwal et al. (2008). The results obtained from the 
laboratory test for the axial force induced in the beams are 
compared with results of the model analysis in Fig. 3. As can 
be seen from Fig. 3, the axial force developed in the beam 
above the removed column is 2450 kN. These values show 
the effect of the catenary action in the beams which indicate 
their resistance against large deformations. Furthermore, 
the results of finite element analysis for proposed model are 
fairly consistent with the experimental results.

4.1  Details of Modeling Structure and Material

The modeling examined in this study is an 8-story steel 
building, so that its progressive failure process was previ-
ously investigated by Jin and El-Tawil (2005). This model 
has four bays in both of the longitudinal and transverse 
directions with the same lengths of 9.14 m. The height of 
the first floor is 4.57 m, and the heights of the other floors 
are equal to 3.66 m. The peripheral special moment-resisting 

frames are considered as the lateral load-resisting system, 
and the interior frames are regarded as the gravity load-
resisting system. Plan and elevation views of the structural 
model are shown in Fig. 4. The dead loads applied to floors 
and roof are, respectively, 5 kN/m2 and 3 kN/m2, while the 
corresponding live loads are 2.4 kN/m2 and 0.96 kN/m2, 
respectively. This structural model was designed as a stand-
ard office building located in an area close to Los Angeles, 
based on the soil type used during design of the structure 
with site class C,  SS = 2.48 g, and  S1 = 1.02 g. The dimen-
sions of the cross section used for all members of the struc-
ture are given in Table 3. Modulus of elasticity and yield 
strength for beams and columns are equal to 2 × 105 MPa 
and 288 MPa, respectively. Nonlinear analysis is performed 
using an open source software such as OpenSees (Mazzoni 
et al. 2006) by considering a special moment-resisting frame 
periphery, as shown in Fig. 4. For modeling the beams and 
the columns, the nonlinear beam column element with 5 
integral points is used. Nonlinear materials steel 01 for col-
umns and reinforcing steel for beams are considered accord-
ing to the work done by Kim and An (2009). The "Coro-
tational" geometric transformation is used to consider the 
effect of catenary action in the beams after removing the 
columns. For columns, the "PDelta" geometric transforma-
tion is also used.

5  Collapse Criterion for Instability 
of the Column

The stability of columns in the structures under progressive 
failure can be evaluated by examining the failure of columns 
adjacent to the removed column. Two scenarios for column 
removal were considered, which are included the removal 
of the exterior column C11 and the interior column C12 as 
shown by the cross sign on the columns in Fig. 4. Instability 

Table 2  Properties of steel materials used in test

Component Yield 
stress 
(MPa)

Ultimate 
stress 
(MPa)

Yield strain Ultimate strain

Beam 455 554 0.0024 0.143
Column 378 494 0.0018 0.189

Fig. 3  Comparison of the axial forces induced in the beam obtained from the analytical and the experimental results
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mechanism occurs when the axial force in the columns adja-
cent to the damaged column reaches its critical load. The 
values of this critical load are presented in Table 4 accord-
ing to the work done by Pantidis and Gerasimidis (2017). 
After removing the column, additional forces are imposed on 
the surrounding columns due to the redistribution of forces 
to maintain system stability, which may cause non-elastic 
buckling in adjacent columns. In this case, the axial force 

of the columns reaches the yielding capacity ( Py ) which is 
equal to A × fy where A is the cross section of the column 
and fy is the yield strength (Gerasimidis et al. 2015). Buck-
ling occurs in the column when a horizontal displacement 
happens in the middle of column. In order to reveal the buck-
ling mode of columns needs to consider the imperfections in 
modeling. As suggested by Pantidis and Gerasimidis (2017), 
these values are assumed to be 0.001 times the vertical loads 
which are entered in a horizontal load on each floor and do 
not affect the structural responses.

In this study, a deterministic analysis is performed on 
the structure under three damage states including light, 
moderate, and severe with two scenarios for removal of the 
columns in the interior and the exterior situations. In these 
analysis, the effect of the catenary action is considered in 
the beams. Then, the ratio of the axial force demand to the 
inelastic buckling capacity P∕Py corresponding to the col-
umns adjacent to the damaged column is extracted to deter-
mine the buckling mode in each limit state. The buckling 
occurs when the ratio P∕Py is greater than the value of one, 
which means that the axial force demand exceeds the value 
of buckling capacity of each member.

Considering the catenary action leads to the development 
axial force in the beams, which increases the resistance of 
the beams against the removal of the column. Figure 5 shows 
the axial force obtained from the push down analysis for the 
beam above the removed column with the number 101 in 
two removal scenarios. As it can be seen from Fig. 5, the 
axial force is almost equal to zero when the catenary action 
is ignored.

The axial force increases in the beam until the limit state 
is close to severe and then decreases when the beam loses its 
resistance against the removal of the column. The increase 
in axial force of the beam is greater in the case of removing 
the middle column than the corner column, which makes 
it more resistant against the deformation. The force gener-
ated in the beam decreases faster by removing the exterior 
column. Therefore, resistance of the structure decreases by 
removing the exterior column faster compared to removing 
the interior column. Increasing the axial force in the beams 
will increase the strength of the structure against the pro-
gressive failure and the failure will occur later. Therefore, 
development of the axial force in the beams affects other 
structural responses.

Fig. 4  Plan and elevation view of the structural model with scenarios 
of the column removal

Table 3  Sections of the structural members

Floor Beam External column Internal column

Roof W18 × 60 W14 × 99 W14 × 132
7 W21 × 83 W14 × 99 W14 × 132
6 W21 × 93 W14 × 109 W14 × 176
5 W27 × 102 W14 × 109 W14 × 211
4 W30 × 108 W14 × 132 W14 × 233
3 W30 × 116 W14 × 145 W14 × 257
2 W30 × 116 W14 × 159 W14 × 257
1 W30 × 124 W14 × 283 W14 × 342

Table 4  Critical Load in the columns

Type of column Condition Critical load

Slender PEuler < Ac × fy PEuler =
�2×E×I

(K×H2)

Intermediate PEuler > Ac × fy Ac × fy

Stocky PEuler > Ac × fu Ac × fu
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The maximum value of the ratio P∕Py in the columns 
adjacent to the removed columns is shown in Fig. 6 for three 
limit states with considering the catenary action. As shown 
in Figs. 6 (a) and 6 (b), buckling occurs in two columns C11 
and  C13 after removing the interior column and in column 
C12 after removing the exterior column in severe limit state. 
Results obtained for the ratio P∕Py are approximately the 
same for two columns C13 and  C14 and have small distance 
to value of 1 in removing the exterior and the interior col-
umn, respectively. From the results, it can be seen that more 
columns buckle in the severe limit state than two other limit 
states in a special moment frame. While in the light limit 
state, none of the columns buckle. Since these columns 
may behave differently under uncertainty conditions, they 

are considered as a case study in probabilistic analysis for a 
more accurate examination in severe limit state. Therefore, 
the effect of each uncertainty parameter on the ratio P∕Py 
for these columns is quantified.

6  Probabilistic Analysis of the Structures 
Under the Progressive Collapse

Structural responses may be affected by the uncertainty 
parameters when the structure undergoes a progressive col-
lapse. Kirçil and Polat (2006) have shown that the capacity 
of structures under progressive failure depends on the vari-
ability of the design variables. Therefore, these uncertainties 
can be taken into account in the specification of the materials 
and loadings which are ignored in the existing regulations.

In this study, the uncertainty parameters considered are 
the elastic modulus, yield strength of the structural mem-
bers, live load, and dead load. The correlation coefficient is 
assumed to be 0.2 between the yield strength and the modu-
lus of elasticity (Park and Kim 2010). Table 5 shows the 
mean, the standard deviation, and the distribution function 
of each random variable (Bartlett et al. 2003; Ellingwood 
1980).

Performing a probabilistic analysis requires a limit state 
function g (x). This function can be determined based on the 
ratio P∕Py of the columns adjacent to the removed column 
as an implicit function:

where X is the vector of random variables that change at 
each stage of the analysis. The failure mode occurs when 
g (x) ≤ 0. RSM method can be used to extract an explicit 

(9)g(X) = 1 − P∕Py

Fig. 5  Comparison of the axial forces created in the beam after the 
removal of the exterior and interior columns with and without consid-
ering catenary action

(a) (b)

Fig. 6  The ratio P∕Py for columns with considering catenary action: a the removal of the exterior column C
11

 ; b the removal of the interior col-
umn C

12
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function for the engineering demand parameter (EDP) which 
is the axial force here. To estimate the limit state function by 
RSM, five levels are considered for each of the random vari-
ables, which include mean, mean ± 1 standard deviation and 
mean ± 2 standard deviation. In total, 54 finite element analy-
sis are needed to perform for 4 random variables. Finally, 
625 number of responses are extracted. Then, they can be 
utilized to estimate the EDP based on the random variables 
using a quadratic polynomial model as Eq. (4) as follows:

where ÊDP is the estimation of the axial force demand for 
the columns. The response values can also be considered 
as target data for the proposed neural network. Therefore, 
a vector of 1 × 625 as target data and a vector of 4 × 625 
are used as input data for training and testing of the neural 
network.

The probability of failure is estimated using the Monte 
Carlo analysis based on both the above-mentioned methods 
as follows:

(10)

ÊDP = �0 + �1E + �2fy + �3DL + �4LL + �5Efy + �6EDL + �7ELL

+ �8DLfy + �9LLfy + �10DLLL + �11E
2 + �12fy

2 + �13DL
2 + �14LL

2

(11)Pf =
1

N

N
∑

i=1

I
(

Xi

)

N is the number of samples and I is the failure index, 
which is displayed with the values of 0 and 1 as

7  Performance of the Neural Network 
in Estimating Results

An example of performance of the ANN for predicting the 
structural response of column C13 to achieve the minimum 
mean squared error for both the column removal scenarios 
can be seen in Fig. 7. As it can be seen, the trained network 
can predict accurate results with training, validation, and 
testing samples with a very small error. Best validation per-
formance is achieved with MSE 2.1724 × 10−5 at epoch 7 in 
interior column removal. Also, best validation performance 
is 4.9068 × 10−9 at epoch 75 for the case of removing exte-
rior ones. Therefore, this well-trained network can be used 
to perform probability analysis.

The results obtained from the nonlinear analysis using 
finite element analysis and the estimation of the ANN in 
validation stage of data have been selected to capture the 
ratio P∕Py of the columns adjacent to the removed column 

(12)I(X) =

{

1 g(x) ≤ 0

0 g(x) > 0

Table 5  Statistical properties of 
uncertainty parameters

Variables Mean Coefficient of 
variation

Probability distri-
bution

References

Yield strength ( f y) 1.10Fyn 0.06 Normal (Bartlett et al. 2003)
Elastic modulus (E) 0.993En 0.034 Normal (Bartlett et al. 2003)
Dead load (DL) 1.05Dn 0.1 Normal (Ellingwood 1980)
Live load (LL) Ln 0.25 Normal (Ellingwood 1980)

(a) (b)

Fig. 7  Reduction in MSE in the training of the network: a the removal of the interior column C
12

 ; b the removal of the exterior column C
11
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in Figs. 8 and 9. These results indicate that there is a good 
correlation between the results of the both analysis. Coef-
ficient of correlation R is approximately equal to 1. As a 
result, there is a very good fit between results obtained from 
the finite element analysis and the results predicted by ANN.

8  Results of Probabilistic Analysis 
for Columns Adjacent to the Damaged 
Column

In this study, after examining the quality of the trained net-
work and RSM method based on the criteria mentioned in 
the previous sections, the probabilistic analysis is performed 
using Monte Carlo simulation. The values of ratio P∕Py  are 
calculated for columns using the Latin hypercube sampling 
for  106 number of samples in both the removal scenarios by 
the ANN and RSM methods. The numerical results obtained 
from the probabilistic analysis are shown in Figs. 10 and 11 
in form of probability distributions. Figure 10 shows the 
probability density of each of the values obtained for the 
ratio P∕Py of columns when an exterior column is removed. 

As shown in Fig. 10, all values of this ratio for column C12 
are concentrated in range 1.3–1.4 which is greater than the 
value 1, while the concentration of these values for the other 
columns is in the range of less than the value of one. There-
fore, column C12 certainly buckles. The results obtained for 
the probability density are a very good match in both RSM 
and ANN methods. As shown in Fig. 11, the ratios P∕Py 
for columns C11 and C13  are concentrated in the range of 
1.1–1.3 and 1.3–1.5 in the case of interior column removal, 
respectively. These values are in the range of less than the 
value of one for columns C14 and C15 . Therefore, columns 
C11 and C13   certainly buckle.

The probability that the values obtained for P∕Py are 
less than a certain value can be displayed in the curves 
that known as cumulative distribution functions (CDFs) 
as shown in Fig. 12. These curves for each column are 
extracted by fitting these ratios with a lognormal distribu-
tion function for the both RSM and ANN methods. There-
fore, it is necessary to examine the probability of values 
that are less than the value of one due to the buckling does 
not occur in this situation for columns around the damaged 
column. As can be seen, there is a good match between the 

Fig. 8  Comparison of the actual 
values calculated from the finite 
element analysis and the values 
predicted by ANN for the ratio 
P∕Py of columns in removal of 
the exterior column C

11
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results of CDFs from the both RSM and ANN methods. 
The maximum values of ratio P∕Py which is corresponding 
to probability 100% extracted from the CDF diagrams that 
shown in Fig. 13. It can be seen that in the case of interior 
column removal, these values are less than the value of one 
only for column C15 and also for columns C14 and C15 in case 
of exterior column removal. Therefore, buckling in these 
columns does not occur under both the removal scenarios.

The exact values of the probability of the buckling of 
the columns around the damaged column obtained from 
the Monte Carlo analysis that are summarized in Tables 6 
and 7. These results obtained for the neural network and 
the response surface methods for both the column removal 
situations. Also, the accuracy of the estimation of the prob-
ability failure using these two methods is measured with the 
values of MSE.

As shown in these Tables, MSE obtained for the neural net-
work method is estimated more accurately than the response 
surface method. However, there are very little difference in 
probability of failure derived from two ways in some col-
umns. This difference can be due to the high nonlinearity of 
the structural responses in the severe limit state. Therefore, the 

response surface method may estimate the limit state function 
with less accuracy in some conditions compared with ANN. 
According to Tables 6 and 7, the probability of failure has the 
same results for both methods in both removal scenarios.

By comparing the results of Tables 6 and 7, it can be found 
that the probability of buckling is very high for columns of  
C11 and C13 in removal of the interior column and is also very 
high for column C12 in case of the exterior column removal. 
Therefore, the results of the probabilistic analysis are very well 
suited to the results of deterministic analysis that shown in 
Fig. 6. In case of the interior column removal, the buckling 
probability of the columns C14 and C15 is very small. In case 
of the exterior column removal, the buckling probability of the 
columns C13, C14 and C15 is also very small. These results are 
highly consistent with the results obtained in previous sections.

9  Sensitivity Analysis

In sensitivity analysis, the effect and importance of the vari-
ability of each of the random variables on the response of the 
structure are determined. At first, the structure response is 

Fig. 9  Comparison of the actual 
values calculated from the finite 
element analysis and the values 
predicted by ANN for the ratio 
P∕Py of columns in removal of 
the interior column C

12
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Fig. 10  Probability distribution for ratio P∕Py of columns using RSM and ANN methods under exterior column removal

Fig. 11  Probability distribution for ratio P∕Py  of columns using RSM and ANN methods under interior column removal
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obtained for the mean value of each input parameter. Then, 
this mean of the response obtained is selected as the base 
value. The least and most responses of the structure are 
determined by  106 number of samples similar to the Monte 
Carlo analysis according to the distribution function of each 
variable, while the values of other variables do not change 
and their response is based on their mean value.

As the results obtained in the previous section, the 
maximum value of the ratio P∕Py occurred in columns 
C12 and C13 under removal of exterior and interior column 
scenarios, respectively. Therefore, these two columns are 
the most vulnerable columns in the column removal pro-
cess and the sensitivity of the response of these columns 
is considered relative to the variability of each random 

Fig. 12  Comparison of the cumulative distribution functions of the ratio P∕Py of columns in both column removal scenarios using RSM and 
ANN methods
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variables. Variability of the structural response to any of 
the uncertainty parameters is shown in Fig. 14, known as 
Tornado diagram. The contribution of each random varia-
ble on variability of the structural response is determined 
by swing, which is the difference between the highest and 
the lowest response. It can also be seen that among these 
four uncertainty parameters, most swing is related to the 
yield strength, which has the greatest effect on the ratio 
P∕Py of column, and the second ones is corresponding to 
the modulus of elasticity. Changes in dead load and live 
load do not have a significant effect on the variability of 
this ratio in the columns.

10  Conclusions

In this study, the behavior of a special steel moment-resist-
ing frame structure under progressive collapse was inves-
tigated using the probabilistic analysis methods. Monte 
Carlo simulation was used to estimate the failure prob-
ability of the structure. Since the limit state function of 
the structural responses to the uncertainty parameters is 
an implicit function, it takes a lot of computational time 
to perform the Monte Carlo analysis using these func-
tions. Therefore, the response surface method was used 

(a) (b)

Fig. 13  Maximum ratio P∕Py of columns with  106 samples: a the removal of the exterior column C
11

 ; b the removal of the interior column C
12

Table 6  Failure probability of 
the columns adjacent to the 
exterior column removal

Column 
number

RSM method ANN method

Failure probability 
( Pf )

Mean square error 
(MSE)

Failure probability 
( Pf )

Mean square error (MSE)

�12 0.994 0.0008 0.989 3.023 × 10−8

�13 7.7 × 10−6 0.0001 3 × 10−7 4.90681 × 10−9

�14 2.2 × 10−6 0.0002 1.1 × 10−7 1.34554 × 10−8

�15 0.5 × 10−6 0.0000 0.1 × 10−7 2.44816 × 10−9

Table 7  Failure probability of 
the columns adjacent to the 
interior column removal

Column 
number

RSM method ANN method

Failure probability ( Pf ) Mean square 
error (MSE)

Failure prob-
ability ( Pf )

Mean square error (MSE)

�11 0.995 0.0025 0.991 3.7368 × 10−5

�13 0.989 0.0038 0.984 2.1724 × 10−5

�14 4.52 × 10−4 0.0009 0.001 1.2799 × 10−4

�15 0.02 × 10−4 0.0002 0.3 × 10−3 9.99452 × 10−7
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to estimate an explicit function that relates structural 
responses to random variables. The mean squared error 
(MSE) criterion was used to determine the accuracy of the 
estimation of the limit state function using the response 
surface method. Neural network method was also used for 
verifying the response surface method. To demonstrate 
the applicability of these methods, an 8-story steel spe-
cial moment frame structure was examined under two sce-
narios of the column removal. Then, the behavior of the 
columns adjacent to the damaged column was studied by 
constructing a limit state function, which was based on 
the ratio of the demand axial force of each column to the 
non-elastic buckling capacity ( P∕Py ) using the probabil-
istic analysis with the RSM and the ANN methods. The 
conclusion of this study can be summarized in the follow-
ing states:

• The number of finite element analyzes was reduced by 
using Monte Carlo simulations based on RSM and ANN 
methods that found limit state functions based on ran-
dom variables. Also, the results of probabilistic analysis 
with  106 number of samples have very little error in both 
methods.

• Results obtained from the RSM and the ANN methods 
were in good agreement especially when the exterior col-
umn was removed. In the case of removing the exterior 
column, the mean squared error (MSE) in both methods 
was less than the interior column removal scenario. Com-
parison of the responses obtained from both the RSM and 
the ANN showed that the ANN method can estimate the 
structural responses with less error.

• The results of cumulative distribution functions (CDFs) 
showed that columns C11 and C13 in the case of interior 
column removal and column C12 in case of exterior col-

umn have a very high probability of buckling. On the 
other hand, columns C14 and C15  in removing the exterior 
column and column C15 under the scenario of the interior 
column removal have a very low probability of buckling.

• According to the sensitivity results, the ratios of  P∕Py 
were more affected by the uncertainty parameters of the 
yield strength and the modulus of elasticity, respectively. 
Dead load and live load have little impact on the vari-
ability of this ratio in columns.

The results of the sensitivity analysis can be used to retro-
fit the structures affected by the progressive failure with con-
trolling the parameters affecting the vulnerability of the col-
umns adjacent to the damaged column. For a decision-maker 
to rehabilitate damage structures, ignoring uncertainties is 
highly unconservative. Therefore, the effect of uncertainties 
on structural responses should be determined by probabilis-
tic analysis. Also, the most effective uncertainty parameter 
is determined using sensitivity analysis. One may want to 
retrofit the structure under progressive failure for a certain 
level of performance. To control the vertical displacement 
response above, the removed column can be used the results 
of sensitivity analysis and can be applied materials for retro-
fitting by considering the most effective uncertainty param-
eters on the structural response.

There are several limitations in the present study. Firstly, 
we performed numerical modeling using 2D frames to sim-
plify and facilitate the use of probabilistic analysis to solve 
problems such as convergence and computational time. 
Secondly, in the probabilistic analysis using Monte Carlo 
simulation need to be considered a large number of sam-
ples to achieve the probability of failure with high accuracy. 
We performed this analysis with  106 samples that finite ele-
ment analysis could not estimate the structural responses 

(a) (b)

Fig. 14  Tornado diagram derived from the sensitivity analysis based on ANN and RSM methods: a column C
13

 in the removal of the interior 
column; b column C

12
 in the removal of the exterior column
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due to time consuming and convergence problems. To 
overcome the problem of insufficient samples, we used the 
response surface method to estimate an equation for struc-
tural responses based on random variables by accepting a 
small MSE. Also, ANN method was used to validate the 
RSM. Due to the time-consuming nature of the probabilistic 
analyzes, we only investigated the buckling failure mode in 
the columns while other failure modes such as the failure of 
the connections and yielding of the bending members such 
as beams were not considered for structures under extreme 
loads, Therefore, further research is needed about the issues 
mentioned in the future.
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