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Abstract

A theoretical model, which considers the fully unsteady character of both heat and mass transfer during the drying of single droplet/wet
particle, is presented. The model enables prediction of pressure and fraction distributions of air–vapour mixture within the capillary pores of
the wet particle crust. The simulations of the drying process of a single silica droplet under different conditions show a permanent rising of
pressure within the capillary pores, but the corresponding vapour fraction remains less than unity. The comparison between the drying histories
of the silica droplet, predicted by the present model with the data, calculated by the model which assumes a quasi-steady-state mass transfer
and linear pressure profile within the capillary pores, shows inconsiderable differences between the droplet/wet particle temperature and mass
time-changes. At the same time, the present model predicts pressure build-up and temperature rising within the particle wet core. However, in
the studied cases the temperature of the wet core temperature does not exceed the liquid saturation temperature and therefore no boiling of
liquid within the particle wet core is observed.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The study of heat and mass transfer of a single droplet, con-
taining solids, is one of the important tasks for proper modelling
of the spray drying process. Typically, the drying kinetics of a
single droplet, containing solids, can be divided into two stages
according to the morphology (see Fig. 1). Thus, in the first dry-
ing stage, the droplet with initial diameter (dd,0 at Fig. 1) has
greatest amount of liquid when it enters the drying medium. In
the drying medium the droplet gains sensible heat (path 0–1 at
Fig. 1) and then evaporation of liquid begins from the droplet
surface. The process of liquid evaporation results in shrinkage
of the droplet diameter (path 1–2 at Fig. 1). When the amount
of liquid within the droplet falls to some critical value, a very
thin layer of a dry solid crust is formed at the outer surface of
the droplet (point 2 at Fig. 1). From this point the second dry-
ing stage begins (path 2–3 at Fig. 1) and the droplet is treated
onwards as a wet particle with constant outer diameter (dp at
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Fig. 1). The wet particle includes two separated regions: solid
crust, which has a porous structure, and wet core, which consists
of liquid and solids. During the second drying stage, as the
result of simultaneous heat transfer to the wet particle and mass
transfer to the drying agent, the thickness of the solid crust
continuously increases, while the diameter of the wet core (di

at Fig. 1) shrinks. The drying stops when the amount of liquid
within the particle reduces to desired value.

Recently, we have critically reviewed the published theo-
retical drying models for both types of single droplets, con-
taining either insoluble or dissolved solids (see Mezhericher
et al., 2007a for details). The literature survey exposed various
shortcomings of published models, such as steady-state con-
ditions for heat and mass transfer equations, ignoring initial
heating-up period of droplet, unjustified neglecting wet par-
ticle temperature profile, disregarding porosity of solid crust,
inaccurate calculation of mass transfer rate. Also, some of the
models were neglecting crust heat absorption and simplified
droplet thermophysical properties were utilized. There was a
lack of validation in a lot of cases as well. In addition, most
of the published models were suitable to describe the drying

 
 

 

http://www.elsevier.com/locate/ces
mailto:avi@bgu.ac.il


M. Mezhericher et al. / Chemical Engineering Science 63 (2008) 12–23 13

drying time

d
ro

p
le

t 
te

m
p

e
ra

tu
re

0

1 2

3

1-st drying stage 2-nd drying stage

dp

di

dd,0
(droplet) (wet particle)

crust

wet core

Fig. 1. Typical temperature curve and morphological changes during drying
of single droplet containing solids.

of single droplet containing either insoluble or solely dissolved
solids. Unlike the models found in the literature survey, the
model of single droplet drying in atmospheric air, which took
into account a fully time-dependent character of the heat trans-
fer during the drying process and temperature profile within
the droplet/wet particle, has been developed in the discussed
paper (Mezhericher et al., 2007a). In this study, partial differ-
ential equations (PDEs) of heat transfer and ordinary differen-
tial equations (ODE) of mass transfer have been developed for
the first and second drying stages. The period of droplet initial
heating-up period, the heat capacity of the crust region, crust
porosity and the temperature dependence of droplet/wet par-
ticle physical properties were also taken into account. In the
second drying stage, it was assumed that the liquid evaporates
from the wet core as the result of heat transfer from the drying
air, and then the vapour moves through the pores of the crust
towards the particle outer surface. This vapour movement in-
side the pores was assumed to be due to Stefan-type diffusion.
From the particle outer surface the vapour was considered to
be taken away by the mass convection mechanism. The corre-
sponding mass transfer rate of the vapour was determined with
the help of the steady-state equation proposed by Abuaf and
Staub (1986). The set of theoretical equations was numerically
solved and the model was successfully validated by compar-
ing the predicted data with corresponding experimental results,
available in the literature for silica and skim milk single droplets
under different drying conditions.

The subject of our subsequent study (see Mezhericher
et al., 2007b) was to investigate the reasons of possible crack-
ing/rupture of a wet particle under elevated temperatures of the
drying agent. It was supposed that dehumidification of the wet
particle by the atmospheric air with temperature much greater
than 100 ◦C can result in bubble formation and boiling inside
the wet core of the particle (Nešić, 1990; Nešić and Vodnik,
1991). This process was considered to be responsible for the
pressure rising under the porous crust. Consequently, if the
difference between the pressure under the crust and the am-
bient pressure was greater than the crust tensile strength, it
would lead to either cracking or rupture of the wet particle.

Furthermore, if the discussed pressure difference exists, the
mass transfer rate through the crust pores is the sum of corre-
sponding diffusion and forced flow rates. However, the equation
of Abuaf and Staub (1986), which we utilized previously for
calculation of the vapour mass transfer rate (Mezhericher et al.,
2007a), fails under such conditions. Thus, in the discussed paper
(Mezhericher et al., 2007b) a modified equation was developed
for evaluation of the vapour diffusion mass transfer rate; this
equation took into account the time and the radius dependences
of the pressure in the pores of the particle crust. The vapour
forced mass transfer rate throughout the porous crust was de-
termined with the help of Darcy’s law equation (Cunningham
and Williams, 1980). By assuming that the pressure changed
linearly in the crust pores and supposing that the vapour mass
transfer rate did not change along the pore, the set of model
equations was numerically solved and simulations of colloidal
silica drying were performed. The calculations showed that
the temperatures of the particle wet core did not exceed the
saturation value (i.e., no evidence for boiling). In addition,
pressure rising within the particle core was not observed for
a wide range of drying conditions. This behaviour was ex-
plained by the large porosity of the silica particles (� = 0.4).
Nevertheless, the elevated temperatures of drying air resulted
in steep temperature differences between the wet particle outer
surface and the wet core, which led to appearance of thermal
stresses in the crust of the dried particle. The calculations of
the thermal stresses and their comparisons to the crust failure
criteria demonstrated, that the thermal stresses can be a reason
of wet particle cracking/rupture and it depended on diameter
of the dried particle, temperature of drying air and equivalent
diameter of solids, which contain the initial droplet, at condi-
tion that all other drying parameters were fixed. In addition,
it was observed that the tangential thermal stresses in the wet
particle crust were predominant over the radial components
(approx. 4.5 times more for silica particles).

As it can be seen, in our previous studies (Mezhericher et al.,
2007a, b) the fully unsteady character of the heat transfer in both
drying stages was considered, but the vapour mass transfer rate
in the second drying stage was calculated by utilizing the quasi-
steady-state conditions. Thus, in one study (see Mezhericher
et al., 2007a), the vapour mass transfer rate was assumed to be
due to Stefan-type diffusion only, and Abuaf and Staub’s quasi-
steady equation (Abuaf and Staub, 1986) was applied. In the
subsequent paper (see Mezhericher et al., 2007b), the sum of
vapour forced and Stefan-type diffusion mass transfer rates was
determined by modifying the equation of Abuaf and Staub. This
modified equation was solved by assuming a linear distribution
of the pressure in the crust pores. It should also be noted that,
in the model (Mezhericher et al., 2007b), it was assumed that
the pressure over the particle wet core remained unchanged and
equalled to the ambient pressure, when the temperature of the
wet core was lower than the vapour saturation temperature at
the ambient pressure. Otherwise, it was supposed that the wet
core pressure was equal to the vapour saturation pressure at the
wet core temperature.

The simplifications made in our previous models by coupling
the unsteady-state PDE of heat transfer with quasi-steady-state
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equations of mass transfer in the second drying stage, saved
computer time need for drying simulations on the one hand.
However, on the other hand these simplifications did not allow
us to evaluate the profiles of vapour fraction and the pressure of
air–vapour mixture within the particle crust. It should be noted
that these distributions are difficult to measure experimentally,
but they provide a lot of information about the character of the
mass transfer process. The other important parameters, that also
cannot be directly measured nowadays and may be predicted
with the help of the drying kinetics model, are the temperature
at the inner surface of the particle crust and the values of pres-
sure and vapour fraction along the pores of particle crust. The
analysis of these characteristics provides a deeper understand-
ing of physical processes which occur within the wet particle
during drying, e.g., mechanisms of mass transfer and pressure
change within the capillary pores.

In the light of the above discussion, there is a need to develop
a more realistic model for single droplet/wet particle drying,
which takes into account the fully unsteady character of the
heat and mass transfer in the second drying stage.

2. Objectives

The objective of the present study is to develop a theoretical
drying model of single droplet/wet particle, which will consider
the fully unsteady character of the heat and mass transfer in
the second drying stage, and to perform the drying simulations
that will allow us to study the mechanisms of mass transfer and
pressure build-up within the wet particle.

3. Model description

3.1. First drying stage

In the first drying stage, drying of a motionless single droplet,
containing solids, surrounded by a flow of atmospheric air, is
modelled (see Fig. 2).

The heat transfer in the first drying stage is considered in
a general case, namely that both conditions Bid < 0.1 and
Fod �0.1 are not satisfied simultaneously. Therefore, the
droplet heat capacity cannot be considered as a lumped one
and a temperature profile within the droplet should be taken
into account. Assuming that the droplet is a sphere with
isotropic properties and the coordinate origin is at the centre
of the sphere, the equation of energy conservation in spherical
coordinates can be written as (Mezhericher et al., 2007a)

�dcp,d

�Td

�t
= 1

r2

�

�r

(
kdr2 �Td

�r

)
, 0�r �Rd(t). (1)

The corresponding boundary conditions are⎧⎪⎪⎨
⎪⎪⎩

�Td

�r
= 0, r = 0,

h(Tg − Td) = kd

�Td

�r
+ hfg

ṁv

Ad
, r = Rd(t).

(2)

The heat transfer from the drying air to the droplet occurs
due to both convection and radiation phenomena. Therefore,

Q

mv

Fig. 2. Scheme of droplet dehumidification in the first drying stage.

the corresponding coefficient of heat transfer h can be evaluated
as follows:

h = hc + hr . (3)

The coefficient of convection heat transfer hc is determined by
the Nusselt number with the help of modified Ranz–Marshall
correlations (Levi-Hevroni et al., 1995):

Nud = ddhc

kd

= (2 + 0.6Re
1/2
d P r1/3)(1 + B)−0.7, (4)

where B = cp,v(Tg − Td)/hfg is the Spalding number. The
coefficient of radiation heat transfer can be found as (Holman,
2002)

hr = ��r (T
4
g − T 4

d )/(Tg − Td). (5)

In the first drying stage the droplet has an excess of liquid
which forms an envelope over the droplet surface, so the drying
is similar to evaporation of pure liquid droplet. For this reason,
the emissivity of droplet surface can be expected to be equal
to this of the liquid fraction of the droplet, i.e., �r = �r,w.

The rate of liquid evaporation from the droplet surface is
determined as

ṁv = hD(�v,s − �v,∞)Ad . (6)

Here the value of mass transfer coefficient hD is evaluated
from the corresponding Sherwood number (Levi-Hevroni et al.,
1995)

Shd = ddhD

Dv

= (2 + 0.6Re
1/2
d Sc1/3)(1 + B)−0.7. (7)

By assuming the elementary droplet mass decreasing is pro-
portional to elementary droplet diameter shrinkage, the droplet
shrinkage rate is found as follows (Levi-Hevroni et al., 1995):

d(Rd)

dt
= − 1

�d,w4�R2
d

ṁv . (8)

For the droplet moisture content, X, which is defined as mass
ratio of liquid and solid fractions within the droplet, the fol-
lowing relation can be found:

X = md,w/md,s = md(1 + Xd,0)/md,0 − 1. (9)
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The droplet specific heat can be evaluated according to Kirillin
and Sheindlin (1956):

cp,d =
(

�qt

�T

)
p

+ cp,w(1 − c) + cp,sc. (10)

In the present study we consider only the ideal mixtures and
solutions, so heat of mixing equals zero, i.e., qt = 0. The
mass fraction of solids and the droplet moisture content are
connected:

c = 1/(1 + X). (11)

The droplet density can be estimated by considering a droplet
as an ideal two-component mixture:

�d = (1 + X)�d,s�d,w/(�d,w + X�d,s). (12)

In order to evaluate the droplet thermal conductivity, either
series (13) or parallel (14) conceptions are applied (Chen and
Peng, 2005):

kd = �kw + (1 − �)ks , (13)

1/kd = �/kw + (1 − �)/ks , (14)

where the droplet void fraction, �, is calculated according to
following expression:

� = Vd,w/Vd = 1 − 6md,s/(��d,sd
3
d ). (15)

The droplet mass can be obtained if we integrate (5):

md = md,0 − 8/6��d,w(R3
d,0 − R3

d). (16)

For drying air at atmospheric pressure the vapour diffusion
coefficient can be calculated as follows (Grigoriev and Zorin,
1988):

Dv = 3.564 × 10−10(Td,s + Tg)
1.75. (17)

From Eqs. (10) and (12)–(14) it follows that the droplet spe-
cific heat, density and thermal conductivity are all functions
of temperature. Therefore, for the set of equations (1)–(17) a
numerical solution is preferred.

3.2. Second drying stage

3.2.1. Heat transfer
The second drying stage begins from the moment when

droplet moisture content falls to the critical value and the pro-
cess of porous crust formation begins on the surface of the
droplet. From now, the droplet turns into a wet particle con-
sisting of a dry porous crust surrounding a wet core. The outer
diameter of wet particle remains unchangeable, but at the same
time the particle wet core shrinks due to evaporation from its
surface, and as a result the crust thickness increases. In our pre-
vious study (Mezhericher et al., 2007a) such scheme of the wet
particle drying has been classified as a problem with internal
moving evaporating interface. This moving interface is called
crust–wet core interface or, simply, the interface in the present

paper. The scheme of wet particle drying in the second drying
stage is illustrated by Fig. 3.

The crust region, whose thermal conductivity is taken as
temperature-independent, is considered as a shell of a hollow
sphere pierced by a large number of identical straight cylin-
drical capillaries. By assuming that the wet particle physical
properties are isotropic and the coordinate origin is at the cen-
tre of the particle, two following equations of energy conser-
vation with corresponding boundary conditions can be written
in spherical coordinates:

Crust region of the dried particle:

�Tcr

�t
= �cr

r2

�

�r

(
r2 �Tcr

�r

)
, Ri(t)�r �Rp, (18)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

kcr
�Tcr

�r
= kwc

�Twc

�r
+ hfg

ṁv

Ai

, r = Ri(t),

Twc = Tcr, r = Ri(t),

h(Tg − Tcr) = kcr
�Tcr

�r
, r = Rp.

(19)

Wet core region of the dried particle:

�wccp,wc

�Twc

�t
= 1

r2

�

�r

(
kwcr

2 �Twc

�r

)
, 0�r �Ri(t), (20)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�Twc

�r
= 0, r = 0,

kcr
�Tcr

�r
= kwc

�Twc

�r
+ hfg

ṁv

Ai

, r = Ri(t),

Tcr = Twc, r = Ri(t).

(21)

The droplet temperature at the point of critical moisture content
is an initial condition for both Eqs. (18) and (20).

In the second drying stage the coefficient of heat transfer, h,
is calculated in the same way as that described above for the
first drying stage (see Eqs. (3)–(5)). The only difference is that
the emissivity of the particle outer surface �r is assumed to be
equal to the corresponding value of emissivity of the particle
solid fraction, i.e., �r = �r,s .

The receding rate of crust–wet core interface is con-
nected with the rate of liquid evaporation from this interface
(Levi-Hevroni et al., 1995):

d(Ri)

dt
= − 1

��wc,w4�R2
i

ṁv . (22)

3.2.2. Mass transfer.
In order to describe the process of liquid evaporation from

the crust–wet core interface inside the wet particle and subse-
quent vapour flow through the crust pores to the ambient, let
us consider an isolated capillary pore of the particle crust. The
scheme of capillary pore is illustrated by Fig. 4.

In the present model the capillary pore is treated as a straight
cylindric body. Therefore, it is convenient to apply the mass,
the momentum and the energy conservation laws for the control
volume (capillary pore) in cylindrical coordinate system. The
origin of this system is at the crust–wet core interface and axis
z coincides with the line of pore symmetry (see Fig. 4).
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Fig. 4. Scheme of capillary pore within the crust of wet particle.

3.2.2.1. Mass conservation. Assuming that within the cylin-
dric crust pore the air–vapour mixture flows isotropically along
z-axis only, the equation of mass conservation can be written
as follows (Burmeister, 1983):

��

�t
+ �

�z
(��z) = 0. (23)

3.2.2.2. Momentum conservation. The development of mo-
mentum conservation equation brings us to three separate
expressions (Burmeister, 1983):

r-component:

�p

�r
= 0 ⇒ p �= f (r). (24)

	-component:

�p

�	
= 0 ⇒ p �= f (	). (25)

z-component:

�

(
��z

�t
+ �z

��z

�z

)
= − �p

�z
+ 1

r

�

�r
(r
rz) + 1

r

�
	z

�	

+ �
zz

�	
+ �gz. (26)

If we assume that only 
rz component of shear stress is non-
zero (see Cunningham and Williams, 1980 for details) and the
gravity term is negligible, we obtain from Eq. (26):

�

(
��z

�t
+ �z

��z

�z

)
= −�p

�z
+ 1

r

�

�r
(r
rz). (27)

The shear stress at rz-plane is calculated as (Burmeister, 1983)


rz = �
��z

�r
. (28)

Substituting Eq. (28) into Eq. (27), we get

�

(
��z

�t
+ �z

��z

�z

)
= −�p

�z
+ �

r

�

�r

(
r
��z

�r

)
. (29)

Since the crust pore has a small radius, which is in order of mi-
crons, we can expect that the air–vapour flow within the pores
will be laminar (Re < 2100). Therefore, the viscous forces
(right-hand side of Eq. (29)) are much greater than the inertial
forces (left-hand side of Eq. (29)). Under such condition, the
integration of Eq. (29) brings us to well-known Darcy’s law
for flow through the porous media (Cunningham and Williams,
1980):

�z = −Bk

�

Atotal

Apores

�p

�z
= − Bk

���
�p

�z
. (30)

3.2.2.3. Mass diffusion. By determining the vapour fraction
v as

v = �v/�, (31)

and assuming that it changes solely along z-axis of the crust
pore, the vapour movement through the crust pores can
be described by the following equation of binary diffusion
(Burmeister, 1983):

�

(
�v

�t
+ �z

�v

�z

)
= �

�z

(
�Dv

�v

�z

)
. (32)

The coefficient of vapour diffusion in the air Dv is found from
semi-empirical correlation (Eckert and Drake, 1972):

Dv = 2.302 × 10−5 p0

p

(
T

T0

)1.81

, (33)

where p0 = 0.98 × 105 Pa and T0 = 256 K.
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3.2.2.4. Energy conservation. The generalized equation of en-
ergy conservation in cylindrical coordinates is (Burmeister,
1983)

�
DcP T

Dt
+ div(−k∇T ) = Dp

Dt
+ q ′′′ + ��. (34)

In the considered case, there is no heat source inside the pore,
thus q ′′′ =0. For gases typically Pr ·Ec>1 and so the conduc-
tion term div(−k∇T ) is much greater than viscous dissipation
term ��; therefore, the latter can be neglected in Eq. (34). In
the present study we also suppose that due to small length of
capillary pore, the changes of air–vapour mixture temperature
along the pore are negligible. Consequently, the above temper-
ature is equal to the temperature of the crust–wet core interface.
Such an assumption allows us to consider only time depen-
dence of the temperature inside the pores of the particle crust.
In addition, the behaviour of air–vapour mixture is considered
to be close to ideal gas.

As the result of above assumptions, the equation of energy
conservation (34) can be reduced to the following:

�cp

dT

dt
= �p

�t
+ �z

�p

�z
. (35)

3.2.2.5. Constitutive equation. The equation of state for the
air–vapour mixture within the capillary pore (by assuming ideal
gas) is

p = �

M
RT . (36)

The main interest of our current work is finding the values
and distributions of the vapour fraction and pressure within
the pores of particle crust. Therefore, the obtained set of five
equations (23), (30), (32), (35) and (36) is transformed in order
to obtain an explicit dependence of the pressure and vapour
fraction on time and space coordinates. These transformations
are described below.

The equation of mass conservation (23) can be rewritten as

d�

dt
+ �

��z

�z
= 0. (37)

Substituting the equation of state (36) into Eq. (37), yields:

M
dp

dt
+ p

dM

dt
− pM

T

dT

dt
+ pM

��z

�z
= 0. (38)

Performing the same operation on Eq. (35), we get

dT

dt
= RT

Mcpp

(
�p

�t
+ �z

�p

�z

)
(39)

or

dT

dt
= RT

Mcpp

dp

dt
. (40)

Differentiating Eq. (30) by z and neglecting permeability, vis-
cosity and porosity changes along the pore, yields

��z

�z
= − Bk

���
�2p

�z2
. (41)

Substituting Eqs. (40) and (41) into Eq. (38), we obtain

M
dp

dt
+ p

dM

dt
− R

cp

dp

dt
− BkM

���
p

�2p

�z2
= 0. (42)

For air–vapour mixture it can be shown that

M = MaMv

Mv(1 − v) + vMa

, (43)

and therefore

dM

dt
= − MaMv(Ma − Mv)

[Mv(1 − v) + vMa]2

dv

dt
, (44)

dM

dt
= −Ma − Mv

MaMv

M2 dv

dt
. (45)

Analogously,

�M

�z
= −Ma − Mv

MaMv

M2 �v

�z
. (46)

Substituting Eq. (45) into Eq. (42), we get finally:

1

�p

dp

dt
= Ma − Mv

MaMv

M
dv

dt
+ Bk

���
�2p

�z2
, (47)

where � = cp/cv is specific heat ratio.
The above equation establishes dependence of both vapour

fraction and pressure of air–vapour mixture on time and space
coordinates. In order to solve this equation, another relation
between p and v , is needed. For this purpose, the equation of
mass diffusion (32) is rewritten as follows:

�
dv

dt
= �

�z

(
�Dv

�v

�z

)
. (48)

Then, by utilizing the equation of state (36), we get

pM
dv

dt
= �

�z

(
pM Dv

�v

�z

)
. (49)

Subsequently, differentiation of Eq. (33) gives

�Dv

�z
= 2.302 × 10−5 p0

(
T

T0

)1.81 (
− 1

p2

)
�p

�z

or

�Dv

�z
= −Dv

1

p

�p

�z
. (50)

Then, using Eqs. (46) and (50), Eq. (49) can be rewritten as
follows:

dv

dt
= Dv

[
�2v

�z2
− Ma − Mv

MaMv

M

(
�v

�z

)2
]

. (51)

The above equation describes the second relation between p
and v .

The obtained set of two differential equations (47) and (51),
which describe the distribution of pressure and vapour fraction
within the pore of particle crust, is the subject for further nu-
merical solution. For this reason, appropriate initial and bound-
ary conditions are developed below.
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Initial conditions: When a solid crust begins to form, the
pressure of air–vapour mixture within an infinitesimal crust
pore can be assumed equal to the ambient pressure. The cor-
responding vapour fraction is calculated as the ratio of partial
vapour density to total density of air–vapour mixture over the
droplet surface at the end of the first drying stage.

Boundary conditions: In the present study we consider that
evaporation of the liquid from the crust–wet core interface is
equivalent to inflow of the vapour mass into the pores of the
particle crust. The corresponding rate of vapour mass inflow
equals the rate of evaporation from the crust–wet core interface:

(�v�z,v)in Apores = ṁv . (52)

Here Apores is the mean area of particle crust cross-section,
occupied by pores (Mezhericher et al., 2007b):

Apores = 4���RpRi . (53)

The mass balance for the vapour fraction at the boundary
z = 0:

(�v�z,v)in = −�Dv

�v

�z
+ v(��z)

∣∣∣∣
z=0

when z = 0. (54)

On the other hand, continuity requires

(�v�z,v)in = (��z)|z=0. (55)

Substituting Eq. (55) into Eq. (54), we get

−�Dv

�v

�z
= (1 − v)(��z)z=0 when z = 0. (56)

By substituting Eq. (52), the above equation can be rewritten as

−�Dv

�v

�z
= (1 − v)

ṁv

Apores
when z = 0. (57)

Finally, substituting Eqs. (22) and (53) into Eq. (57), we obtain

�Dv

�v

�z
= (1 − v)�

1−��wc,w

Ri

Rp

d(Ri)

dt
when z = 0. (58)

In the present study we assume that the liquid fraction in
the particle wet core is in equilibrium with the vapour over the
crust–wet core interface, i.e.,

v = �v,sat(Twc,s)/� when z = 0. (59)

Then, the pressure of air–vapour mixture at the crust–wet core
interface can be found by combining the above equation with
the ideal gas law (36):

p = pv,sat(Twc,s)
Mv

vM
when z = 0. (60)

For the second boundary of the capillary pore (z = Lp), the
following equation of mass conservation for vapour fraction
can be developed:[

−�Dv

�v

�z
+ v(��z)

]
Apores

= �hD(v − v,∞)Ap when z = Lp

or

− �Dv

�v

�z
+ v(��z)

= �hD(v − v,∞)
Rp

Ri

�−� when z = Lp. (61)

In the present paper it is assumed that the pressure at the particle
outer surface is equal to the drying air pressure. Therefore, for
z = Lp:

p|z=Lp = pg . (62)

Combining the above condition with the equation of state (36)
and substituting the result into Eq. (61), yields to

− Dv

�v

�z
+ v(��z)

RTwc,s

pgM

= hD(v − v,∞)
Rp

Ri

�−� when z = Lp. (63)

In such a way, the pressure of air–vapour mixture and the
vapour fraction within the capillary pores of the particle crust
is determined by the set of differential equations (47) and (51),
and their boundary conditions (58), (60), (62) and (63).

4. Numerical solution of the developed model

In the present study, an original numerical solution procedure
has been developed and realized as a computer program. The
procedure is based on the algorithm proposed by Moyano and
Scarpettini (2000).

4.1. First drying stage

The PDE (1) is solved simultaneously with its boundary con-
ditions (2) and additional equations (3)–(17). The numerical
solution is complicated due to the presence of a variable spatial
domain 0�r �Rd(t). This difficulty is overcome by applying
the fully implicit finite difference scheme with fixed time-step.

4.2. Second drying stage

In order to obtain the numerical solution of the developed
model, the above mentioned fully implicit finite difference
scheme with fixed time-step is applied for each of PDE (18) and
(19), which represent the energy conservation in the regions of
particle crust and wet core. Then, the set of non-linear PDE
(47) and (51) and their boundary conditions (58), (60), (62) and
(63), determining the distributions of pressure and vapour frac-
tion within the capillary pore of the particle crust, have been
discretized according to the procedure, given in the paper of
Moyano and Scarpettini (2000). A predictor–corrector method
for numerical solution of non-linear PDE is implemented (see
Ames, 1965, for details). Finally, two sets of algebraic equa-
tions, which are obtained after above discretization of Eqs. (18),
(19) and (47), (51), are coupled by utilizing common boundary
conditions at the crust–wet core interface.
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Fig. 5. Temperature history of silica droplet/wet particle.
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Fig. 6. Mass history of silica droplet/wet particle.

5. Results of calculations

With the help of numerical solution of the developed model,
drying simulations of a droplet containing colloidal silica parti-
cles (primary particles) have been performed. The dried slurry
consists of mono-dispersed amorphous silica spherical parti-
cles (median size of primary particle was 0.272 �m, density
was 1950 kg/m3), deflocculated in water with an initial vol-
ume fraction of primary particles of 0.10 (see Minoshima et al.,
2002 for details). No specific binder is utilized. The emissivi-
ties of droplet liquid and solid fractions are considered as fixed
values and are set �r,w = 0.96 and �r,s = 0.8 correspondingly
(see Knudsen, 1997). During the studies, different parameters
are varied: drying air temperature is changed in the range of
150–750 ◦C, drying air velocity is 0.25–3.5 m/s, initial droplet
diameter is 0.25–2 mm and porosity of the particle crust is al-
tered between 0.1 and 0.4. The important characteristics of the
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Fig. 7. Moisture content history of silica droplet/wet particle.
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Fig. 8. Pressure over the crust–wet core interface in the second drying stage.

droplet/wet particle are tracked during the simulations: temper-
ature of the droplet centre and outer surface, droplet mass and
moisture content, vapour fraction and pressure of air–vapour
mixture over the crust–wet core interface within the particle
pores.

A number of calculation results predicted by the developed
model for different temperatures of drying air are illustrated
by Figs. 5–9. In these simulations we have utilized the fol-
lowing values of drying parameters: initial droplet temperature
Td,0 =19 ◦C; initial droplet diameter dd,0 =2 mm; particle crust
porosity � = 0.4 and final moisture content Xf = 0.05. The
velocity of the drying air has been set ug = 1.4 m/s.

At the same drying conditions as mentioned above, Figs. 10
and 11 demonstrate typical distributions of vapour fraction and
pressure of air–vapour mixture within the capillary pores at the
end of the drying process (Xf = 0.05). The character of these
distributions is common for the whole process in the second
drying stage.
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at the end of drying process (Xf = 0.05).

As mentioned above, the simulations with the help of the de-
veloped model have been performed using various drying con-
ditions, such as different values of drying air temperatures and
velocities, initial droplet diameters and particle crust porosi-
ties (the studied ranges of these parameters have been referred
before). However, it has been found that the main drying char-
acteristics demonstrate similar behaviour in all the investigated
cases, so that in the current paper these characteristics are pre-
sented as functions of the drying air temperature only.

6. Discussion

The predicted history of silica droplet temperature under dif-
ferent drying conditions shows the existence of temperature
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Fig. 11. Typical distribution of the pressure within the capillary pores at the
end of drying process (Xf = 0.05).

difference between the particle outer surface and its centre (see
Fig. 5). As can be seen, this difference is zero at the beginning
of the second drying stage and grows permanently in course of
drying, reaching a maximum value at the end of the drying pro-
cess. On the other hand, the maximum temperature difference
increases with higher temperatures of the drying air. Thus, the
maximum temperature difference varies between ∼ 7 ◦C for
Tg = 150 ◦C and ∼ 80 ◦C for Tg = 750 ◦C.

It should be noted that at the drying air temperatures of 600
and 750 ◦C the temperature of the wet core exceeds 100 ◦C (the
boiling temperature at atmospheric pressure).

The histories of droplet mass and droplet moisture content,
which are shown in Figs. 6 and 7, demonstrate similarity during
the drying process: maximum value at the beginning of the
drying and then gradual decreasing in time.

Figs. 8 and 9 present the pressure and the vapour fraction over
the crust–wet core interface during the second drying stage.
From these figures there can be seen a gradual increase of
pressure and vapour fraction over the interface between the
crust and the wet core. This can be explained in the following
way: rise of the particle temperature leads to evaporation of the
liquid fraction in the particle wet core, and, as consequence,
increases the vapour fraction and partial vapour pressure over
the crust–wet core interface. On the other hand, the partial
pressure of dry air over the above interface gradually reduces
during drying as the result of dry air diffusion from the drying
medium through the pores towards the particle wet core and the
forced flow of air–vapour mixture in opposite direction. The
imbalance of these two processes: increase of the pressure of
vapour fraction and decrease of the pressure of dry air fraction,
results in the build-up of air–vapour mixture pressure over the
interface between the crust and wet core. The corresponding
value of vapour fraction also rises. Consequently, it led us to the
conclusion that in the studied cases the diffusion mechanism
of vapour flow plays more important role than forced vapour
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flow due to pressure difference inside the pores of the particle
crust.

If we analyse the data presented in Figs. 8 and 9, it can
be concluded that in spite of the fact that pressure differ-
ence between the wet core and the surrounding rises up to
30% of the pressure of the drying air, the corresponding val-
ues of vapour fraction remain less than unity (v|z=0 < 1)

in all studied cases. Since the core temperature is lower
than the saturation temperature at the core pressure, boiling
does not occur (although, the core temperature rises above
100 ◦C, which is the saturation temperature of the particles
surrounding).

Typical distributions of vapour fraction and pressure along
the crust pores are presented in Figs. 10 and 11. As can be seen,
both the vapour fraction and the pressure decrease linearly from
the particle core towards it outer surface.

After analysing the behaviour of drying characteristics cal-
culated with the help of the present model, it was decided to
compare its predictions with our previous model (Mezhericher
et al., 2007b). The first drying stage of both the present and the
previous models is described by the same set of equations and
therefore only calculation results in the second drying stage of
the two models are considered. The main difference between
the models is the way of modelling the mass transfer from the
wet core to the drying air. The results of comparison for silica
droplet drying under different temperatures of drying air are il-
lustrated in Fig. 12. The following values of drying parameters
have been applied in the simulations: Td,0=19 ◦C, dd,0=2 mm,
ug = 1.4 m/s, � = 0.4 and Xf = 0.05.

From Fig. 12a it can be seen that the curves of particle surface
temperature, predicted by two different models, are nearly co-
inciding and the maximum discrepancy does not exceed 1.32%.
The temperatures in the particle centre (see Fig. 12b), calcu-
lated by two different ways, show slight difference (about 1.2%
maximum) for drying air temperatures of Tg = 150, 200 and
400 ◦C. It can be noted that for Tg = 600 and 750 ◦C, our pre-
vious model (Mezhericher et al., 2007b) predicts that corre-
sponding temperatures of particle centre lie below 100 ◦C at
the end of the drying process. From the present model it can be
seen that these temperatures are above 100 ◦C. So, the great-
est difference in temperatures of particle centre is 2.29% for
Tg = 600 ◦C and it equals to 2.92% for Tg = 750 ◦C. The parti-
cle mass time-change shows a very good agreement in all con-
sidered cases (see Fig. 12c), and the largest deviation between
the curves corresponding to the different models is lower than
0.12%.

It should be noted that, in contrast to the present model,
the calculations made using the model (Mezhericher et al.,
2007b) did not demonstrate pressure increase over the crust–wet
core interface during drying. The reason for this is that in the
model (Mezhericher et al., 2007b) the increasing of pressure
over the particle wet core was connected with the wet core
temperature, and, therefore, particle cracking/rupture due me-
chanical stresses (which result from the pressure difference be-
tween the inner and outer surfaces of the particle crust) could
not be predicted by the previous model (Mezhericher et al.,
2007b).
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7. Conclusions

In the present study a theoretical model of heat and
mass transfer of single droplet/wet particle drying has been

 
 

 



22 M. Mezhericher et al. / Chemical Engineering Science 63 (2008) 12–23

developed. Unlike our previously published models
(Mezhericher et al., 2007a, b), the developed one considers the
fully unsteady character of heat and mass transfer in the
second drying stage and enables calculation of the pressure
and vapour fraction of air–vapour mixture within the capil-
lary pores of the particle crust. The model equations have
been numerically solved and simulations of the drying pro-
cess of single silica droplet have been performed. During the
studies, the drying air temperature, drying air velocity, ini-
tial droplet diameter and porosity of the particle crust were
varied in wide ranges. In order to reduce the length of the
paper, only the influence of drying agent temperature was
presented.

An important finding in the present study was the continu-
ous rising of the pressure inside the particle over the crust–wet
core interface. The model prediction was explained by imbal-
ance of two concurrent processes. The first process results from
liquid evaporation at the crust–wet core interface, which causes
vapour mass flow inside the pores by diffusion and forced mech-
anisms. The second process is dry air movement within the
pores: diffusion of the dry air from the surrounding towards the
interface and dry air forced flow in opposite direction. In that
way, it was concluded that in the studied cases the diffusion
mechanism of vapour flow played a more important role than
forced vapour flow due to pressure difference inside the pores
of the particle crust.

The developed model showed that no boiling of the liquid
inside the particle wet core was observed in the studies per-
formed (see previous section).

The comparison between the drying histories of colloidal
silica droplet predicted by the developed model with the data
calculated utilizing our previous model (Mezhericher et al.,
2007b), showed insignificant differences for both droplet tem-
perature and mass time-changes under different drying condi-
tions. In our previous model (Mezhericher et al., 2007b) we
have described the process of mass transfer in the second dry-
ing stage by utilizing the assumptions of quasi-steady-state and
linear pressure profile within the crust pores (as it can be seen,
typical pressure distributions, presented in Fig. 11, confirmed
the justification of the last assumption). As a result, the ob-
tained mass transfer equations were much simpler than devel-
oped in the present study, which considers the full time de-
pendence. Therefore, our previous model (Mezhericher et al.,
2007b) requires less computer time for calculations and this
fact gives us the opportunity to apply the above model with
reasonable accuracy for cases when fast computations are nec-
essary. On the other hand, if one needs to obtain more detailed
information about wet particle behaviour during drying: the
exact temperature, pressure and vapour fraction values at the
crust–wet core interface and/or the pressure and vapour frac-
tion distributions within the pores of the crust, the model de-
veloped in the present paper will be very helpful. This model
can be also utilized for prediction of particle cracking/rupture
during drying due to both temperature and mechanical stresses,
which result from corresponding temperature and pressure dif-
ferences between the inner and outer surfaces of the particle
crust.

Notation

A surface area, m2

Apores mean area of crust cross-section, occupied by pores,
m2

Atotal total mean area of crust cross-section, m2

b empirical coefficient
B Spalding number
Bi Biot number
Bk crust permeability, m2

c mass concentration of solid fraction, kg kg−1

cp specific heat under constant pressure, J kg−1 K−1

cv specific heat under constant volume, J kg−1 K−1

d diameter, m
Dv coefficient of vapour diffusion, m2 s−1

Ec Eckert number
Fo Fourier number
g acceleration of gravity, m s−2

h heat transfer coefficient, W m−2 K−1

hc coefficient of convection heat transfer, Wm−2 K−1

hD mass transfer coefficient, m s−1

hfg specific heat of evaporation, J kg−1

hr coefficient of radiation heat transfer, W m−2 K−1

k thermal conductivity, W m−1 K−1

Lp length of crust pore, m
m mass, kg
M molecular weight, kg mol−1

ṁv rate of evaporation, kg s−1

n empirical coefficient
Nu Nusselt number
p pressure, Pa
p0 reference pressure, Pa
Pr Prandtl number
qt specific heat of mixing, J kg−1

q ′′ heat source term, W m−3

r radial coordinate, m
R radius, m
R universal gas constant, J mol−1 K−1

Re Reynolds number
s space coordinate, m
Sc Schmidt number
Sh Sherwood number
t time, s
T temperature, K
T0 reference temperature, K
ug velocity of drying agent, m s−1

V volume, m3

X moisture content (dry basis), kg kg−1

z axial coordinate, m

Greek letters

� thermal diffusivity, m2 s−1

�m empirical coefficient
�T coefficient of thermal expansion, K−1

� empirical power coefficient
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� specific heat ratio
� droplet void fraction
� crust porosity
�r emissivity
	 angular coordinate
� dynamic viscosity, kg m−1 s−1

� density, kg m−3

� Stefan–Boltzmann constant, W m−2 K−4


 shear stress, Pa
� velocity, m s−1

� dissipation term, J kg−1 m−2

v vapour fraction

Subscripts
a air, dry air fraction
atm atmospheric
c crust capillary
cr particle crust
d droplet
f final point of drying process
flow forced flow
g drying agent
i crust–wet core interface
in inflow
m air–vapour mixture
out outflow
p particle
pores crust pores
r radial direction
s solid fraction or surface
sat saturated
v vapour, vapour fraction
w water
wc particle wet core
z axial direction
0 initial point of drying process
∞ bulk of drying agent
	 tangential direction
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