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a b s t r a c t

Many social complex networks are best modeled as a bipartite graph and they evolve
during time, thus, predicting links that will appear in them have become highly relevant
and critical. Link Prediction is a key direction in social complex network research refers
to estimating the possibility of the existence of non-existent links between node pairs.
In criminal networks, link prediction can provide a very efficient way in the discovery of
missing or hidden links and the detection of the underground groups of criminals. Only
few works address the bipartite case, though, despite its high practical interest and the
specific challenges it raises. Likewise, most of prior algorithms of link prediction consider
a threshold. However, it is difficult to set such a proper threshold in advance for a given
dataset. Hence, in this paper, we propose a new method called Latent Link Prediction
based on Internal and Local Links (LLPIL) for bipartite networks. LLPIL is based on new
proposed topological metric named reliability that can reflect the likelihood of two nodes
to be connected. We exploit the proposed model to identifying and preventing future
criminal activities. Extensive simulations show that our proposed algorithm has high
prediction accuracy and low time complexity.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Complex network has shown to be highly effective in modeling and analyzing many complex systems, such as social,
iological and information systems [1–3]. Such network structure is made up of individuals represented by nodes and
heir relations expressed by links [1,4,5]. In recent years, networks which are formed via social interactions have been
ncreasingly attracting research attention due to the heterogeneity of their components [6,7]. Dynamic variation and
volution of these links over time make it necessary to predict missing and potential links [5,8–11]. Criminal networks, in
articular, exhibit a relatively high propensity to have hidden or missing nodes and links due to the covert and stealthy
ature of criminal activities, the incompleteness, incorrectness, and inconsistence of the captured data [12]. Crime can be
odeled as a generalized graph consisting of nodes (people, events, etc.) and links (relationships between nodes) based
n variables as the group, time, and geographic location. . . [13]. Link prediction is an important hot topic of complex
etworks [5] aims to estimate the probability of a link between two nodes [1,3,8,14] using the network structure [8,15,16].
t has applications in different areas [1,3,17] such as bibliographic field, criminal investigations, co-authors scientific
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ollaboration [18–20], movie actors network [21], sharing habits [22] and recommending systems [14,23,24]. Liben-
owell [25] et al. proposed one of the earliest link prediction models for social networks. In monitoring networks of
riminals, link prediction is used to discover hidden connections between criminals from existing information [5,11,26,27]
o detect underground relationships and to prevent crime or terrorist activity [11,28] which it can reduce the effects
f an attack in many fields as security threat like life of a victim, stability threat, infrastructure destruction and so
n [29]. Recently, many methods have been proposed to predict potential links in bipartite networks [17,24] such as
earning and similarity-based ones [30]. A learning-based approach is treating the link prediction problem as a binary
lassification task [31,32]. Tolan [33] et al. used five classifiers namely: Na‘̀ıve Bayes (NB), K-Nearest Neighbor (KNN), Tree
nduction (C4.5), Iterative Dichotomiser (ID3) and Support Vector Machine (SVM) for terrorism prediction. Experiments
ere performed on real-life data represented by Global Terrorist Data (GTD) with the help of WEKA as one of open
oftware in data mining written in JAVA [34]. Learning-based methods have the difficulties in feature selection and
nbalancing output classes and are suffered from computational cost and limitation of capacity [29,31]. Therefore it is not
uitable for large scale and dynamic networks [31]. Similarity-based approaches provide the simplest framework [14,15],
hey are often very efficient for its low computational complexity [31,35,36]. A similarity-based approach is to compute the
imilarities on non-connected pairs of nodes by various graph-based similarity metrics like nodes’ information, network
opology, etc [32] and assumes that the greater the similarity values between nodes are, the higher the likelihood of the
xistence of links between them [3,5,8,17,24,37,38]. Several methods exist to measure node similarity, such as Adamic–
dar (AA) [39], Resource Allocation (RA) [40] Common Neighbor (CN), Jaccard Coefficient (JC) and preferential attachment
PA) [41–43]. Kumar et al. [44] explored CN, JC, AA and RA for predicting the hidden links or the future ones on GTD.
uthors did not differentiate from the predicting link in term of importance (rating the prediction link and its probability
f occurrence). CN, JC and PA were used in [45] where Allali et al. address the problem of link prediction in dynamic
ipartite graphs by proposing method called Internal Link Prediction (ILP) based on a special introduced kind of links
alled internal link (IL) that represent the core of their work. The concept of the IL will be further elaborated in Section 2
f this paper. Their main approach consists in transforming bipartite graph into projection graph and assigning weights
o the edges in this graph called induced link (IdL). ILP performed very well, it was purely structural. Moreover, it may be
xtended in several ways. The projection can be performed on either part of the bipartite graph. However, the authors did
ot explain whether different projections could produce different results or the part on which the projection should be
erformed to obtain a better result. Furthermore, the considered potential links (ILs) are those with weights greater than
threshold. Therefore, a proper threshold must be predefined to obtain accurate results. However, it is difficult to set a
roper threshold in advance for a given dataset. These disadvantages are considered to be study by Gao et al. [46]. In this
ork, authors proposed the Potential Link Prediction (PLP) method. They defined a new kind of links called Candidate
ode Pair (CNP) which was somewhat similar to the IL and the notion of patterns covered by CNP. Patterns were similar to
he IdLs in the previous work. Gao et al. defined a new measure called connectivity of the CNP, and they used it as the final
core of link prediction. The experimental results showed that PLP could achieve higher speed and superior quality link
rediction results in bipartite networks compared with other methods because more topological information is considered
n connectivity. In addition, the authors proved that projecting to either part will achieve the same result. Therefore, to
educe the computation time, the graph must be projected only to the part with fewer nodes. The connectivity used as a
imilarity index is not enough; authors did not specify the connectivity values to be considered in the calculation. In this
tudy, we propose a new method for link prediction in bipartite graph has the advantages of [45] and [46] and overcomes
heir limitations based on local and adjacency information. Our main contributions are summarized as follows:

• Our proposed method is based on the highly correlated and mutually helpful information contained in nodes
connections and it is easy to be implemented with low computation time and higher accuracy. It is based on
reliability rather than threshold; the reliability is a new measure that the existing literature on similarity metric
for link prediction does not appear to use.

• Our work contributes to predicate the criminal incident to protect the whole world. It will be used as a core
framework for early warning system and it can help to develop a crime analysis tool that assists in detecting crime
patterns, identify and analyzing common patterns to reduce further occurrences of similar incidence and providing
information to formulate effective strategies for crime prevention.

• We evaluated the computation of the proposed method by a detail quantitative analysis. To the best of our
knowledge, it is the efficient one for prediction in terms of computation and accuracy overhead. This has been
verified by the effective results that have shown for predicting criminal acts using the most comprehensive and
world’s largest dataset GTD.

The remainder of the paper is organized as follows: Section 2 outlines graph theoretical preliminaries and basic notions,
ection 3 gives the framework of our method of link prediction. Experimental results and discussions are presented in
ection 4. Finally, Section 5 concludes this paper exploring the future directions.

. Mathematical preliminaries

In this section, we present a few preliminary definitions that will be used in the rest of this paper.
2
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Fig. 1. Bipartite graph (a), and its projected graphs (b) and (c).

Definition 1 (Bipartite Graph). G = (U, V, E) is bipartite graph, where U and V are two disjoint sets of vertices and E is
the set of edges in which: ∀e = (u, v) ∈ E, u ∈ U and v ∈ V, U ∪ V = E and U ∩ V = ∅[24,45]. Assuming that U has n
nodes and V has m nodes, the adjacency matrix A of G takes the following form:

A =

⏐⏐⏐⏐ 0n,n Bn,m

BT
m,n 0m,m

⏐⏐⏐⏐ (1)

where 0n,n and 0m,m are n x n and m x m zero matrices, respectively, and B is an n x m nonzero matrix. In this case, the
maller matrix B uniquely represents G, and the remaining parts of A can be discarded as redundant [46]. The neighbors
(x) of a node x ∈ U in G is the set of all nodes such that there exist at least one edge linking x and this node: N(x) = {

y|y ∈ V, (x, y) ∈ E }. The number of its neighbors represents its degree, namely D(x).

Definition 2 (projected Graph). The projection of the bipartite graph G = (U, V, E) is to project it into unipartite graph of
one kind of its original nodes. As a consequence, in the projection over the nodes in U-part (Gu), the neighbors of each
node in V -part are linked between them in Gu and in the projection over the nodes in V -part (Gv), the neighbors of each
node in U-part are linked between them in Gv . The U-projected graph of G is Gu = (U, Eu), where the set of edges [45,46]
is:

Eu = {(x, y)|x, y ∈ U, ∃z ∈ V , z ∈ N(x) ∩ N(y)} (2)

N(x), N(y) is the set of neighbors of nodes x and y respectively in G.

Similarly, Gv can be defined. Fig. 1 shows example of a bipartite graph and its projections.

Definition 3 (Internal Links). (x, y) is an IL in the bipartite graph G = (U, V, E) such that: x ∈ U, y ∈ V and (x, y) /∈ E if and
only if it is an IL by U-projection and it is an IL by V -projection.

In other words, an IL in a bipartite graph G is a pair of nodes x and y such that adding the link (x, y) to G does not
change its Gproj; i.e. Gu = G’u and Gv = G’v .

In Fig. 1, for example, (B, k) is an IL, because all neighbors of k in G, namely N(k) = {C, D} are already linked to B in
Fig. 1(c), namely Nu(B) = {A, C, D, E}, i.e. N(k) ∩ Nu(B) = {C, D} and the condition is also true in the projection over the
top nodes, i.e. all neighbors of B in G, namely N(B) = {i, j, l} are already linked to k in (Fig. 1(b)), namely Nv(k) = {i, j, l},
i.e. N(B) ∩ Nv(k) = {i, j, l}. In either case, the intersection does not equal the empty set.

Definition 4 (Induced Link). Given a bipartite graph G = (U, V, E), the set of links induced by any pair of nodes x ∈ U and
∈ V in Gu is:

Eu(x, y) = {x} ∗ N(y) = {(x, w), w ∈ N(y)} (3)

where Eu is the set of links in Gu. Hence, (x, y) is in IdL covered by the link (x, w). Similarly, we can defined the set of IdL
n Gv . So, Gu(Likewise Gv) is made entirely of IdLs. IdLs represents the nodes within G that share endpoints. By definition,
link is an internal if and only if all the links it induces are already in Gproj. In Fig. 1, for example, let consider U is the
ottom nodes and V is the top-nodes, then Eu of the link (B, k) = {B} ∗ N(k) = {(B, C),(B, D)} ⊑ Gu and Ev of the link (B,
) = {k} ∗ N(B) = {(k, i),(k, j and (k, l))} ⊑ Gv and therefore (B, k) is an IL.
3
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Table 1
Definition and description of the relevant variables.
Term Designation

Gu U-projection of the bipartite graph G = (U,V,E)

Eu Induced links in Gu

N(A) Neighbors of node A

(A,B) Induced link (A,B)

(A,x) Internal link (A,x)

W (A,B) Weight of (A,B)

S(A,x) Connectivity of (A,x)

Rd(A,B) Reliability of (A,B)

RI (A,x) Reliability of (A,x)

I Set of ILs which induces links satisfying condition in formula (11), these ILs have S ≥ RI

3. Algorithm

3.1. Motivation

Our proposed method combines the advantages of the previous works [45] and [46] and it addresses their weaknesses.
n our algorithm, the link is unpredictable unless if it is a link in the projection on both sides. This means that the projection
ill produce the same results, regardless of the projection side. Hence, the projection will be on the subset with the lowest
umber of nodes to reduce the time of calculation and the identification of the ILs enumerates only the efficient links.
herefore, the time complexity of our proposed algorithm is O(n), where n is the number of the fewer nodes in two
ubsets. Also, to calculate the weight of IdLs, our algorithm does not depend on a threshold and does not depend on one
easurement index that does not have specific values as if there is a use of the threshold indirectly but rather, it depends
n two proven metrics which integrates more topological information as measures of similarity and it compares between
hem to achieve more perfect prediction results.

.2. Algorithm design

In this section, we describe our LLPIL algorithm applied in criminal act prediction. At a high level, this involves creating
Gproj from G, identifying all possible ILs and predicting the potential ones with weights. These phases are detailed below.
n order to accurately describe the method, the definitions of the relevant variables are given in Table 1. In the rest of
his paper, we utilize uppercase letters, such as A, B to designate the U-part nodes and lowercase letters, such as x, y to
esignate the V -part nodes. To make the annotation more smooth, we will consider that U-part has the lowest number
f nodes and it will be the same way if the opposite is.
We create the projection graph of G over the part with few nodes. Then, we weight the induced links.

.2.1. How to weight an induced link ?
To weight the IdLs, we use two weighting functions. The weight W defined in [46] and the new proposed metric called

he reliability of an IdL, which play a key role in our proposed method.

.2.1.1. Weight of induced link according to [46]. Suppose that Gu = (U, Eu) is the projected graph of G = (U, V, E). Let (A,
) be an IdL in Gu, then its weight as defined in [46] is as follows

W (A, B) =
2

D(A) + D(B)

∑
v∈N(A)∩N(B)

1
D(v)

(4)

where D(A), D(B) and D(v) are the degrees of nodes A, B and v, respectively in G. N(A) and N(B) are the sets of neighbors
f A and B, respectively, in G. This measure is symmetric, it is based on the nearest neighbors and the similarity score
etween the nodes A and B will be assigned higher if A and B have more common neighbors with lower degrees. If they
ave no common neighbors, their similarity score equals to zero, which it is somewhat similar and very close to RA
efined as [40],

RAAB =

∑
v∈N(A)∩N(B)

1
D(v)

(5)

The method of weight [46] has fatal disadvantage. It makes default that the two nodes A and B in the network have the
same effect on each other, however, it does not accord with the reality. i.e, each node is dependent on the other node to
a different extent. Thus, we propose the reliability of an IdL in which W ′(A, B) ̸= W ′(B, A) and it is defined as follow.
4
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Fig. 2. Example of bipartite graph G (1), and its bottom node-projection (2) based on [48].

3.2.1.2. Weight of induced link according to our proposition in this paper. Consider a bipartite network comprised of agents
nd events. By considering the agents as the holders of resources that flow through the network, we can infer a matrix
ontaining only the agents from these between-mode connections or a matrix containing only the events. If the projection
s done over agent nodes, the resources flow from the agents to the events in direct proportion to each agent’s degree.
hus, if an agent has links to three events, one third of his resources flow from to each of these events, and so on. It is
he same for the projection over the events nodes; if an event has ties to four agents, then a quarter of the resources
omentarily parked on the event flow to each of the four agents who share ties to the event [47,48]. Mathematically:

W ′(A, B) =

∑
A̸=B,k:mAk;mBk=1

1
D(B) ∗ D(k)

(6)

where W ′(A, B) represents the strength of the tie that exists between the two nodes A and B as the result of their co-
articipation in k events in the original bipartite matrix, mAk = 1 means that a link exist between A and k, mBk = 1 means
hat a link exist between B and k. D(B), D(k) represent the degree of nodes B and k, respectively, in G. Fig. 2 also offers a
raphic depiction of this process for a simple bipartite network containing five agents (A, B, C, D and E) and four events

(i, j, k and l). Two nodes are structurally equivalent if they participate in the same events do by them as the nodes D and
E in Fig. 2, they participate in two events k and l each other which are the same. In a bipartite network, a given node is
structurally reliable by another node if the later participates in at least the same events as the former, and if the later node
participates in additional events that do not involve the first one, the reliability of the first one by the second one remains
unaffected, though the second node would then be only structurally reliable by the first node. for example, the node B
participate on the same events i and j as node A, so node B is structurally reliable by node A and node B participates in
he additional event k that do not involve the node A, so node A is partially reliable by node B.

efinition 5 (Reliability of IdL (Rd)). Reliability (R) is a node-level measure of relationship in bipartite network. It is based
n a derivation of the equivalence between nodes. As the measure’s name implies, Reliability more accurately scores the
trength of the tie and the consistency between two nodes. The projection graph is non-oriented, hence, if we called the
dL (A, B) or (B, A) is the same one, but node B may be structurally reliable by node A, while node A is partially reliable
by B, thus:

W ′(A, B) ̸= W ′(B, A). Therefore, the reliability of the IdL (A, B) is the summation of the strength of the ties that exist
etween (A and B) and the strength of the ties that exist between (B and A)divided by 2. More formally:
Suppose that Gu = (U, Eu) is the projected graph of G = (U, V, E). Let (A, B) be an IdL in Gu, then its reliability is defined

s:

Rd(A, B) =
W ′(A, B) + W ′(B, A)

2
(7)

where, R (A, B) represents the consistency of agents A and B as the result of co-participation in events.
d

5
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Once we have created a weighted projection graph, we identify ILs that induce links which already exist within Gu.
ecall, this is the definition of an IL in Section 2. Then, we predict them based on the weight of their IdLs satisfying the
ondition that their weights are greater than or equal their reliabilities (evading the use of the threshold). More formally,
e only keep ILs(TG, ta) where TG ∈ Terrorist group and ta ∈ Terrorist attack where Induced(TG, ta) is true, in which

nduced(TG, ta) returns true if any link induced from the IL(TG, ta) has a weight W ≥ Rd. Once we have the set of the ILs,
e calculate their weights.

.2.2. How to weight an internal link ?

.2.2.1. Weight of internal link according to connectivity proposed in [46]. The connectivity (S) of the IL(A, x) in bipartite
raph G = (U, V, E) is the accumulation of the weight of each IdL covered by it. S(A, x) is defined as [46]:

S(A, x) =

∑
(A,B)∈Γ (A,x)

W (A, B) (8)

n which, W (A, B) is the weight of the IdL (A, B), and Γ (A, x) is the set of the IdLs covered by the IL(A, x)

Γ (A, x) = {(A, B)|B ∈ Nu(A) ∩ N(x)} (9)

where, Nu(A) are the neighbors of node A in Gu and N(x) are the neighbors of node x in G. In [46] authors stated that a
CNP (IL) covering higher-weight patterns (IdLs) would have a higher probability of conducting by linker, but they did not
identify the values that are considered high as if they had used a threshold equal to zero. So, in this research, we defined
the reliability of an IL to give meaning to the values of connectivity and specifying them in one hand and to avoid the
use of the threshold [45] in the other hand.

3.2.2.2. Weight of IL according to reliability proposed in this paper.

Definition 6 (Reliability of IL (RI )). We defined the reliability of the IL (B, x) in bipartite graph G = (U, V, E) as:

RI (B, x) =

∑
(A,B)∈Γ (A,x)

Rd(A, B) (10)

In which, Rd(A, B) is the reliability of the IdL containing A and B, and Γ (A, x) is the set of the IdLs covered by the IL(A, x)
according to formula (9) and satisfying condition in (11).

Γ (A, x) = {(A, B) ∈ Eu|B ∈ Nu(A) ∩ N(x),W (A, B) ≥ Rd(A, B)} (11)

From formula (10), we can see that the reliability of the IL(A, x) is simply the summation of the reliabilities corresponding
to the IdLs that it covered and which have weights superior or equal to their reliabilities. Obviously, the IL which has a
higher probability to appear is the one covered a large number of important IdLs. The connectivity of the IL defined by
formula (8) and its reliability defined by formula (10) reflect the probability of an IL to be connected. Therefore, they are
used as the final score of link prediction. Building off of the ILs structure already established for link prediction, we saw
the opportunity to predict ratings for these links as well. We predict an IL if and only if its connectivity is more or equal
to its reliability. The framework of the LLPIL algorithm is described below.

LLPIL Algorithm (Latent Link Prediction based on Internal and Local Links)
Input: Bipartite graph G = (U,V,E), such that U-part has the lowest number of nodes;
Output: Set of ILs: I with their weights (connectivity S and Reliability R);
Begin
(1) /* Construct the set of all IdLs according to formula (2) */

Eu = ∅; I = ∅;
For each node A in U do

For each node x in N(A)do
For each node B in N(x)do

Eu = Eu ∪{(A, B)};
EndFor

Endfor
Endfor

(2) /* Calculate the weight of each IdL */
For each edge (A,B) in Eu do

Calculate the weight of the IdL(A ,B) according to formula (4);
Calculate the reliability of the IdL(A,B) according to formula (7);

Endfor
6
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(3) /* Calculate S of each IL and its RI and construct the set of ILs that fulfill the condition S ≥ RI ;
For each node A in projected graph Gu do

For each neighbor B of A in projected graph Gu do
For each node x ∈ N(B) in G do

if (A,x)/∈ E then
if S(A,B) ≥ Rd(A,B)then

S(A,x) = S(A,x)+W (A,B); RI (A,x) = RI (A,x)+Rd(A,B);
if S(A,x) ≥ RI (A,x) then

I = I ∪{(A, x)};
Endif

Endif
Endif

Endfor
Endfor

Endfor
(4) Output {I}.
End

4. Experimental evaluation

In order to prove the performances of our proposed method and to show its adaptability and flexibility, we conduct
onsiderable simulations on 3 benchmark data-sets: GTD, RAND Database of Worldwide Terrorism Incidents (RDWTI)
nd Southern Women (SW) network through comparisons with ILP and PLP methods in terms of accuracy metric named
rea under the receiver operating characteristic curve (AUC [48–50]). A machine powered by an Intel Core i5 with 6 GB
AM, running Windows 7 is used to carry out the experiments. The algorithm was coded using Java, and the results are
isualized by Excel. To evaluate the accuracy of the results, we use a random partitions of training set (90%) and probe set
10%) for each data-set. Averages are taken to four decimal places; the entries corresponding to the highest AUCs scores
mong the methods are emphasized in black.

.1. Matrix representation

We utilize the adjacency matrix M to visualize our graphs. Advantage of this representation with respect to the node
link representation is the non-overlapping display of graph edges, and the readability of the graph especially for larger
and denser graphs [5,27,33] like our case. In the case of GTD for example, the rows of M correspond to the terrorist groups
TG), and the columns correspond to the terrorist attacks (ta). If there is an edge between TG and ta, the corresponding
ell has the value of 1, otherwise, it has the value of 0.

.2. Experimental design

In this section, we discuss the implementation details of our method and the benchmark ones. For our method, nodal
roximity was measured using formula (11), in which we relied on the S and R as weighting functions. We selected
wo representative methods described in Section 1; ILP [45] and PLP [46] as a benchmark. We benchmarked our method
gainst ILP using two weighting functions, the commonly used in practice CN and we named ILP−CN. For CN, two nodes
and v, are more likely to have a link if they have many common neighbors [13,33]. Using CN, Newman [51] firstly rose
p the idea of analyzing the structure of scientific collaboration network , showing a positive correlation between the
umber of common neighbors and the probability that two scientists will collaborate in the future. CN is defined as:

σ (u, v) = |N(u) ∩ N(v)| (12)

nd against JC which we called ILP−JC. JC is the earliest local link prediction algorithm, which is proposed by Jaccard in
901 [49,51]. It is defined as :

γ (u, v) =
|N(u) ∩ N(v)|
|N(u) ∪ N(v)|

(13)

or benchmarking our method against the PLP method, we use two cases. In the first one, we take all predicted links in
ccount and we named PLP−1, and in the second one, we take only predicted links that achieve a connectivity superior
r equal to a threshold in account and we called PLP 2. Table 2 summarizes the benchmark methods.
−

7
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Table 2
Summary of benchmark methods.
Method Weight function Abbreviation

Internal Link Prediction CN and threshold ILP−CN

JC and threshold ILP−JC

Potential Link Prediction S (all Values) PLP−1

S and threshold PLP−2

Latent Link Prediction based on Internal and Local links S and RI Our (LLPIL)

4.3. Experimental results and analysis

4.3.1. Experiments on GTD
GTD is a large semi structure dataset includes terrorist attacks over 4 decades, currently the most comprehensive and

orld’s largest unclassified dataset available on terrorism incidents used for the experiment [33]. It contains information
n over 140,000 terrorist attacks across the globe such as occurrence of the attack, modus-operandi of terrorist groups,
heir names, etc. For this article, we extract the two important columns: attacktype1 (terrorist attack) and gname (terrorist
roup). We generate heterogeneous graph by drawing an edge between these features. Table 3 contains the data selected
s a case study, consisting of 50 rows containing the names of 50 terrorist groups and 6 columns containing the 6 types
f their attacks. The value in the table is 1, if the group was involved in such attack, otherwise, it has 0.

Table 3
Fifty terrorist groups and their attacks selected from GTD.
Group-Terrorists A B F AA HT H

Tupamaros(Uruguay) 1 1 1 1 1 0
Armed Commandos of Liberation) 1 1 1 0 0 0
Individual 1 1 1 1 1 1
Popular Front for the Liberation of Palestine(PFLP) 1 1 1 1 1 1
Black Nationalists 1 1 1 1 1 0
Left-Wing Militants 1 1 1 1 0 1
White Extremists 1 1 1 1 0 0
Strikers 1 1 1 1 1 0
StudentRadicals 0 1 1 1 0 0
Fuerzas Armadas de Liberacion Nacional (FALN) 0 1 1 1 1 0
23rd of September Communist League 1 1 0 1 1 0
New Year′s Gang 0 1 1 0 0 0
EritreanLiberation Front 0 1 0 1 1 1
1st of May Group 0 1 1 0 1 0
Ku Klux Klan 1 1 1 1 1 0
Black Panthers 1 1 0 1 0 1
Japanese Red Army (JRA) 0 1 0 0 1 1
Montoneros (Argentina) 1 1 1 1 1 0
Jewish Defense League(JDL) 1 1 1 1 1 1
Taliban 1 1 1 1 1 1
Al−Qaida in the Arabian Peninsula(AQAP) 1 1 1 1 1 1
Al−Shabaab 1 1 1 1 1 1
Al−Qaida 1 1 0 1 1 1
Anarchists 0 1 1 1 0 0
Popular Revolutionary Vanguard(VPR) 0 1 0 0 1 0
Irish Republican Army(IRA) 1 1 1 1 1 0
Baloch Republican Army (BRA) 1 1 1 1 1 1
United Liberation Front of Assam(ULFA) 1 1 1 1 1 0
Black September 1 1 1 1 1 1
al−Fatah 1 1 1 1 1 1
Basque Fatherland and Freedom (ETA) 1 1 1 1 1 0
Misrata Brigades 0 1 0 1 1 1
Haqqani Network 1 1 0 1 1 0
Huthis 1 1 1 1 1 1
Maoists 1 1 1 1 1 0
Black Liberation Army 1 1 0 1 1 1
Misrata Brigades 0 1 0 1 1 1
Kurdistan Workers′Party (PKK) 1 1 1 1 1 1
Baloch Liberation Front (BLF) 1 1 1 1 1 1
Tehrik−i−Taliban Pakistan (TTP) 1 1 1 1 1 1
New People′s Army (NPA) 1 1 1 1 1 0

(continued on next page)
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Table 3 (continued).
Group-Terrorists A B F AA HT H

Boko Haram 1 1 1 1 1 1
Croatian Nationalists 1 1 1 1 1 1
Ulster Volunteer Force (UVF) 1 1 1 1 0 0
Separatists 1 1 1 1 1 0
People’s Liberation Army (India) 1 1 0 1 1 0
Jamaat−ul−Ahrar 1 1 0 1 1 0
Paraguayan People′s Army (EPP) 1 1 1 1 1 0
Fulani Militants 1 0 1 1 1 1
M−19 (Movement of April 19) 1 1 1 1 1 1

Abbreviation of attacks’ names are: A: Assassination, B: Bombing/Explosion, F: Facility Infrastructure
Attack, AA: Armed Assault, HT: Hostage Taking (Kidnapping), H: Hijacking.

We create our bipartite graph G = (Terrorist groups, Terrorist attacks), we then create its projection graph over the
terrorist attacks. For the account, Table 3 has been represented by a matrix according to the formula (1). Table 4 shows
the main topological features of the network in each test.

Table 4
Main topological features of the GTD bipartite network.
Test Number of Number of N−E N−EP N−ET

terrorist nodes attack nodes

1 10 6 46 5 41

2 10 6 46 5 41

3 30 6 94 9 85

4 30 6 94 9 85

5 50 6 239 24 215

6 50 6 239 24 215

Where, N−E means number of links, N−EP : number of probe links and N−ET : number of training links.

Accuracies of the algorithms subject to link prediction are represented in Table 5. Each number is obtained by 2
implementations with independently random partitions of training set (90%) and probe set (10%).

Table 5
Comparison of AUCs by our method LLP−LI and other methods on the GTD.
Test ILP−CN ILP−CN ILP−JC ILP−JC PLP−1 PLP−2 OUR

τ = 3 τ = 5 τ = 1/3 τ = 2 S S ≥ 0.5

1 0.9286 0.5 0.8571 0.6 0.9786 0.9571 0.9786
2 0.8214 0.5 0.8429 0.5 0.8857 0.8222 0.9
3 0.8833 0.6472 0.8514 0.7111 0.9125 0.8333 0.9125
4 0.8542 0.7333 0.8736 0.7757 0.8653 0.7778 0.8736
5 0.7924 0.7097 0.8169 0.6880 0.8344 0.7113 0.8344
6 0.7886 0.5721 0.7862 0.6760 0.8125 0.6827 0.8180
Average 0.8447 0.6104 0.8380 0.6585 0.8815 0.7974 0.8862
Average% 84% 61% 84% 66% 88% 80% 89%

As shown in Table 5, our method achieves higher accuracy than ILP and PLP and it substantially outperforms each
benchmark in almost prediction test. Therefore, we prove the positive contributions of the combined advantages of ILP
and PLP algorithms for link prediction. For example, on the 2nd test, OUR algorithm obtains the AUC score 0.9, whereas
ILP−CN (τ = 3), ILP−CN (τ = 5), ILP−JC (τ = 1/3), ILP−JC (τ = 2), PLP−1 and PLP−2 achieve 0.8214, 0.5, 0.8429, 0.5,
.8857, and 0.8222 respectively. This shows that the LLPIL algorithm can obtain higher-quality results than the other
ethods. Note that high values of UAC obtained by ILP−CN and ILP−JC correspond to small values of the threshold τ for

Ls prediction. Similarly, if we take all predicted links in the count, then the PLP has high values of UAC (PLP−1), whereas,
f we considered that the high values of connectivity are those superior or equal to 0.5 than PLP has low values of UAC
PLP−2). Our method achieves the highest predictive accuracy (89%) among the benchmark methods, although there is
o significant difference with of PLP−1 88%, but LLPIL relies on two weighting functions to predict potential links what
istinguishes it and makes it more precise. As a conclusion, our method can obtain results with high quality similar to
hose by PLP in the same computation time with more efficiency and significance. As a result, links recommended by our
ethod generally have higher utilities than those recommended by benchmark methods.
To further compare the results of our method with PLP−1 [46], we added Fig. 3 and discussed it.
Note: the notation (ta1, TG9) in Fig. 3 means that the group number nine will do an attack of type 1 and so on.
9
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Fig. 3. Comparison the values of the measures obtained by PLP−1, PLP−2 and our method.

As shown in Fig. 3, the connectivity in our method is equal to the reliability which is proposed to replace the use of
the threshold just as in ILP [45] and to make the values of connectivity in PLP [46] more significance, we see that the link
(ta6, TG2) in the case of Measures of test 1 is a predicted link by the method PLP−1 although it has low connectivity (0.2),
hich it is seems as if there is a threshold equal to zero. While in our case it is a predicted link since that its connectivity
qual to its reliability what makes our method more expressive, appropriate and acceptable. Also, we can see that some
alues of connectivity in PLP−1 such as that of the 5 links ((ta6, TG1), (ta6, TG2), (ta6, TG5),(ta6, TG7) and (ta6, TG8)) in
he case of Measures of test 2 have diminished Compared with their connectivities in our method and this because that
ome of the IdLs covered by them have connectivities inferior then their reliabilities (the condition we added to identify
inks that have a high probability of occurring). Thus, the values of connectivity which are taken into account in our case
re only those that are equal to or greater than the values of the reliability and not all as in PLP−1 [46] (this explains the
ow number of the predicted links when we took only the values of the connection which are equal to or superior then
.5 as in PLP−2 [46] in the case of Measures of test 1, such as the 7 links (ta5, TG2), (ta6, TG1),((ta6, TG2),(ta6, TG5),(ta6,
G7),(ta6, TG9),(and (ta6, TG10))).

.3.2. Experiments on RDWTI
As the second example, we test the RDWTI [52,53], a compilation of data from 1968 until 2009, it is managed by the

DWTI Corporation 2016. With over 40,000 incidents of terrorism coded and detailed, RAND provides comprehensive
nformation on international and domestic terrorism. It is a fully searchable and interactive database, it is available
n https://www.rand.org/nsrd/projects/terrorism-incidents/download.html. In this paper, the data was selected from 9
ebruary 1968 until 10 December 1974 where the two taken attributes for the analysis are perpetrator and weapon. 5
ifferent labels are used to represent different type of weapon, these labels are Firearms, Explosives, Fire or Firebomb,
emote-detonated explosive and Knives & sharp objects. If the perpetrator was used the specified weapon then a link
elies between them in the bipartite graph. The main topological features of the RDWTI selected data is represented in
able 6.

Table 6
Main topological features of the RDWTI bipartite network.
Number of perpetrators nodes Number of weapons nodes N−E N−EP N−ET

100 5 189 19 170

Table 7 presents the AUC scores of 5 tests achieved by the algorithms in the 6 cases; ILP−CN (τ = 2), ILP−CN (τ = 4),
ILP JC (τ = 0.1), PLP 1, PLP 2 (S ≥ 1/3) and OUR. From the table, we can see that LLPIL obtains the highest AUC scores
− − −
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mong the algorithms in the almost tests. LLPIL has lower AUC score than PLP−1 in the 2nd test but the difference was
nsignificant. LLPIL achieves the highest average (90%), significantly better than PLP−1 (87%) and the other algorithms.
his shows that the LLPIL algorithm can achieves higher-quality results than the other algorithms.

Table 7
Comparison of AUCs by our method LLPIL and other methods on the RDWTI dataset.
Test ILP−CN ILP−CN ILP−JC PLP−1 PLP−2 OUR

τ = 2 τ = 4 τ = 0.1 S S ≥ 1/3

1 0.579 0.5 0.1289 0.8367 0.7526 0.8367
2 0.5526 0.5 0.0367 0.9101 0.763 0.8421

3 0.7895 0.5 0.4729 0.8246 0.8246 0.9298
4 0.9474 0.5 0.8718 0.9474 0.9474 0.9474
5 0.5526 0.5 0.0572 0.8262 0.7156 0.9269
Average 0.6842 0.5 0.3135 0.869 8006 0.8966
Average% 68% 50% 31% 87% 80% 90%

4.3.3. Experiments on southern women network
We have compared our proposed algorithm LLPIL with the PLP one cited in [46], for this reason, we have select a

ata set used in [46] as the third example to more validate the advantages of our proposed method. The data set called
he Southern Women (SW). It was collected by Davis et al. around Mississippi during the 1930s in a wide-ranging study
f class and race in the Deep South. Because its community structure is known, this dataset has been widely used as a
enchmark for social network analyzers [46,54]. SW depicts the participation of 18 women (bottom−nodes) in 14 social
vents (top−nodes). There are 89 edges linking women nodes and event nodes. A visualization of the bipartite graph for
he SW Study is shown in Fig. 4. In the network, each edge indicates that the woman attended the corresponding event.

Fig. 4. Southern Women bipartite network.

Table 8 shows the main topological features of SW network.

Table 8
Main topological features of the Southern Women bipartite network.
Number of women nodes Number of events nodes N−E N−EP N−ET

18 14 89 9 80

Table 9
Comparison of AUCs by our method LLPIL and other methods on the Southern Women dataset.
Test ILP−CN ILP−CN ILP−JC ILP−JC PLP−1 PLP−2 OUR

τ = 5 τ = 6 τ = 1/3 τ = 0.5 S S ≥ 0.5

1 0.5556 0.5 0.867 0.7104 0.9124 0.6667 0.9124
2 0.7417 0.5 0.8116 0.7343 0.9468 0.5556 0.9468
3 0.6918 0.5 0.8767 0.7350 0.9464 0.6889 0.9464
4 0.6401 0.5556 0.7669 0.7350 0.9509 0.7870 0.9509
5 0.7068 0.5 0.8124 0.7728 0.933 0.6667 0.9425
Average 0.6672 0.5111 0.8269 0.7375 0.9379 0.673 0.9398
Average% 67% 51% 83% 67% 94% 67% 94%

Table 9 presents the AUC scores of 5 tests achieved by different algorithms. From the table, we can see that LLPIL
obtains the highest AUC scores among the algorithms in all 5 tests. Although PLP 1 achieved the same height result as
−
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ur method (94%), our method was better in test 5 with a score of 0.9425 than PLP−1 (0.933), resulting in an average
f 0.9398 that exceeds the average achieved by PLP−1, which is 0.9379. This shows that the LLPIL algorithm can achieve
igher-quality results than the other methods.
Based on the AUC scores of the results on the three datasets shown in Tables 5, 7 and 9, we conclude that our method

s much better than the other methods, as it is not related and it is not limited to any condition, unlike ILP and PLP, which
equire a small threshold to achieve good results.

.4. Time efficiency

Fig. 5 shows the experimental results in terms of running time required by the algorithms. As PLP, LLPIL detects the
dept links only within the set of ILs and its time complexity algorithm is linear to the lowest number of nodes in the
wo parts. Thus and according to the results, LLPIL can obtain a better prediction result with low time complexity.

Fig. 5. Computation time of the algorithms.

As a conclusion, our method combines the advantages of both methods PLP and ILP. It is easy in the implementation
like ILP and has results with low time complexity as PLP and in a standard situation.

5. Conclusion

In many real world networks, the links and node attributes are often partially observable. In this paper, we have
proposed an innovative algorithm in bipartite graph to predict hidden and missing links on the basis of the topological
analysis of internal and local links. In order to further increase prediction accuracy, we introduced new weight function
called reliability to predict only sufficient and appropriate links. Reliability replaces the threshold such in [45] on the one
hand and specifies acceptable values of connectivity in [46] on the other. The proposed algorithm was applied in crime
prevention as a case study. Our simulations demonstrated the advantageous performance of our proposed approach over
GTD, RDWTI and SW. For GTD, the results show that the proposed algorithm can achieve higher speed and superior
quality prediction, it reduce the complexity and it improve prediction accuracy (89%) which is greater than 80,41% [55]
and 81,12% [56]. From the various simulations observations, it is evident that the proposed approach is the efficient one
for prediction.

Some directions of future research appear attractive: We plan to adapt our approach in order to handle temporal
issues, to merge other metrics like the structural consistency and structural perturbation method proposed in [14] which
is considered more accurate and robust or to use other metrics like the triadic closure structure.
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