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Abstract—Device-to-device communications have been consid-
ered as an indispensable enabler, which reduces the traffic bur-
den associated with fifth-generation (5G) mobile networks. To
improve the radio spectrum utilization under such a communi-
cations scheme, cognitive spectrum sensing can be used to identify
temporarily available spectrum chunks for direct interconnections
among user devices. Although various sensing techniques have been
proposed during the last decade, improving the sensing efficiency
(SE), such as energy reduction and positive sensing ratio, remains
an open challenge. The problem becomes more pronounced in 5G
networks, wherein battery-constrained Internet-of-Things devices
(IoTDs) are densely interconnected. In this article, we optimize
the SE by leveraging a lightweight yet effective adaptive medium
learning method with a probabilistic decay feature. Specifically,
the wireless channels that are likely available for IoTDs are sorted
and sensed in the descending order of their availability likeli-
hood/probabilities, which indicate the estimated percentage of the
availability of the sensed channels. These probabilities learn from
the preceding sensing results, and they decay with time. Numerical
results show that the proposed sensing approach achieves signifi-
cant SE improvement compared to state-of-the-art algorithms.

Index Terms—Device-to-device (D2D) communications, Internet
of Things (IoT), probabilistic sensing, sensing efficiency (SE),
spectrum sensing, uncertain wireless environment.

I. INTRODUCTION

THE ever-increasing number of connected devices has been
considered as one of the key motivations for the devel-

opment of fifth-generation (5G) mobile networks. The rapid
development of the Internet of Things (IoT) paradigm, with
various emerging applications (e.g., smart home, intelligent
transportation systems, industry 4.0, etc.), is the clearest evi-
dence for this status quo. The explosion of concurrent IoT con-
nections will definitely overwhelm the 5G spectrum regardless
of its allocated bandwidth. As a result, improving the spectrum
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Fig. 1. Cognitive radio for IoTD communications in 5G-and-beyond networks.

utilization is an essential challenge that the 5G-and-beyond
networks face. To that extent, cognitive radio (CR) has been
considered as a great potential solution [1]–[3]. CR introduces
opportunistic communications not only for connections between
the IoTDs and the networks but also among IoTDs directly by
exploiting temporarily available radio channels/spectrum. These
temporarily available/idle channels can be found through spec-
trum sensing techniques in which radio devices physically sense
wireless channels. Fig. 1 illustrates a prime scenario, wherein
dense IoTDs associate with either the eNodeBs (eNBs) or each
other. In this environment, infrastructureless connections can be
established among the IoTDs by utilizing the CR technology
[4], [5].

In 5G-and-beyond networks, two main challenges that call for
novel spectrum sensing technologies are 1) a large number of
licensed/unlicensed wireless channels and 2) device-to-device
(D2D) communication demands among battery-constrained
IoTDs. The former requires IoTDs to consume a significant
amount of time and energy to sense over the entire spectrum,
while the latter faces the problem of energy limitation in the
IoTDs. In addition, because the IoTDs are mostly known as
light-traffic services (e.g., machine-type communications) [6]–
[9], which require much less transmission resources, sensing the
entire or a large portion of the 5G spectrum is unnecessary and
ineffective. In particular, this leads to poor sensing efficiency
(SE) in terms of energy consumption (EC) and the positive
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sensing (PS) ratio. The PS ratio is defined as the percentage
of the number of sensed channels that are vacant to the total
number of sensed channels. It can be seen that 0 ≤ PS ratio ≤ 1.
A higher PS ratio implies that less channels have to be sensed,
i.e., a higher SE. Most existing works on spectrum sensing in
5G, e.g., [10] and [11], overlooked the uncertainty in the set of
potential channels (for sensing) and its implications on the SE.

To cope with the uncertainty of wireless environment, we pro-
pose a novel cognitive spectrum sensing algorithm by leveraging
a lightweight yet effective adaptive medium learning method,
namely probabilistic decay featured sensing (PDFS) algorithm.
The PDFS adopts a centralized model, wherein a central co-
ordinator (CC) manages and controls the sensing operations
in the IoTDs. The IoTDs sense each wireless channel in their
proximity with a corresponding probability. The probability
estimates the likelihood that the wireless channel is considered
to be vacant at this moment. This estimation is determined by
jointly considering the IoTDs’ location and preceding sensing
results with respect to the time-dependent decay impact. A new
observation of positive (i.e., the channel is idle) or negative
(i.e., the channel is busy and not available for secondary use)
sensing report will trigger-update the probability accordingly. As
a result, the PDFS prioritizes to sense high-probability wireless
channels, and, therefore, it significantly improves the PS ratio.
The main contributions of this article are summarized as follows.

1) At each IoTD, the PDFS dynamically senses a discrete set
of wireless channels which have high probabilities to be
available (i.e., PS). The wireless channels that might have
a higher chance to lead to negative results can be mostly
ignored.

2) The PDFS improves the SE and, hence, reduces the energy
required for spectrum sensing that is particularly critical
for IoTD operations. Moreover, the overhead reduction
of sensing reports and decrease in sensing latency are
achieved, resulting in higher spectrum utilization.

3) Extensive simulations confirm that PDFS outperform
state-of-the-art sensing algorithms (e.g., [12] and [13]) in
both SE and computational complexity.

The remainder of this article is organized as follows. We
present a literature review of cutting-edge sensing algorithms in
Section II. Section III discusses the problem in detail. Section IV
describes the SE optimization with adaptive medium learning,
and we evaluate the performance of the proposed algorithm
in Section V. Finally, we draw conclusions and suggest future
directions in Section VI.

II. RELATED WORKS

Aiming at improving the SE, a variety of cutting-edge sensing
algorithms have been proposed in the literature [10], [11]. From
an operational model design perspective, the existing algorithms
can be classified into two main categories: 1) Cooperative [12]–
[17] and 2) Non-cooperative [18]–[21] models.

In a cooperative model, the CC processes sensing information
from all IoTDs to model the status of wireless channels for
calculating appropriate sensing parameters and then dispatches
the sensing configurations to the IoTDs. For instance, Na et al.

[12] proposed a centralized cooperative directional sensing tech-
nique to realize fine-grained sensing for IoTDs with directional
antennas. The CC collects all reported information via available
directional antennas from IoTDs. Based on a joint optimization
running on the collected information, the CC assigns optimized
sensing parameters (sensing period, sensing power, and sensing
beams) to each IoTD. On the other hand, a spatial–temporal
sensing node selective fusion scheme [13] was proposed to
calculate the minimal sensing EC while maintaining the required
detection performance. In [14], Xiong et al. proposed an adaptive
spectrum sensing strategy to improve the SE by strictly consider-
ing IoTD traffic parameters. The CC models IoTD traffic-pattern
transitions by following discrete-time Markov chain to flexibly
decide whether a random or persistent spectrum range should
be sensed. To reduce feedback overhead of sensing reports
from IoTDs to CC, So and Srikant[15] modified the formal
feedback by applying opportunistic transfer behavior based on
a threshold optimized and published by the CC. Only IoTDs
that satisfy this threshold are allowed to send feedback data
to the CC. Alternatively, because SE maximization cannot be
jointly achieved with maximal energy efficiency (EE), Hu et al.
[16] balanced the SE and EE following two typical strategies:
Maximizing EE while satisfying SE requirement and vice versa.
The corresponding optimal algorithms are developed based on
a joint optimization function of sensing duration (SD) and final
decision threshold. In [17], an iterative algorithm was proposed
to maximize EE by jointly determining the optimal sensing time,
data transmission time, and number of IoTDs. The algorithm
exploits the impact of transmission power variation to obtain
the optimal sensing time and the corresponding probability of
sensing false alarm (FA).

Unlike the cooperative system models, adopting non-
cooperative models (a.k.a decentralized solutions) forces the
IoTDs to individually perform sensing activities and share the re-
sults together without the support of a central entity. For instance,
Vosoughi et al. [18] presented a fully distributed trust-aware
consensus-inspired scheme for distributed cooperative spectrum
sensing (DCSS) that was effective against insistent spectrum
sensing data falsification (ISSDF) attacks. This scheme partially
removes SE reduction and interference with IoTDs of ISSDF
attacks and boosts flexibility, cost-saving, missed-detection, and
FA error rates of cooperative systems. In [19], Hajihoseini and
Ghorashi proposed a distributed diffusion-based method to im-
prove convergence rate, reliability against communication link
failure, and the performance of spectrum sensing in CR sensor
networks. From another perspective, Lu and Duel-Hallen[20]
proposed a pilot-based IoTD-link channel state information
(CSI)-aided sensing strategy to solve CSI mismatch, pilot over-
head, and frequency correlation in practical mobile CR ad hoc
networks. This strategy was then combined with a multichannel
first-come-first-served medium access control scheme to resolve
IoTDs competition prior to sensing, randomize sensing deci-
sions, and boost the network throughput. Aygun and Wyglin-
ski[21] proposed a voting-based distributed cooperative sensing
algorithm for connected IoTDs based on the probability of FA
and missed detection to converge the spectrum detection error
to zero. The algorithm calculates an optimum energy detection
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TABLE I
KEY NOTATIONS

threshold to sense the available channels from the IoTDs and
selects the one with the highest number of votes.

Although these aforementioned sensing algorithms make sig-
nificant contributions to improve the SE, a strict consideration of
uncertain wireless environment has not been taken into account
to provide flexible and adaptable sensing operations.

III. PROBLEM STATEMENT

The SE challenge (P) is expressed as follows: “Given that
there are m wireless channels available in the transmission
range of an IoTD, and the IoTD requires n channels for its
communication, how to minimize the EC for spectrum sensing
activity while satisfying the IoTD requirements.” We consider
a system model that consists of a central macro eNB and a
number of small eNBs/access points/femtocells in the coverage
area. All these network devices provide infrastructure-aided
communication ability to the users. In this model, the number
of and locations of small network devices are unknown owing
to their mobilities. This context realizes an uncertain wireless
environment; see Fig. 1. Let M , S, and N denote the sets of
available wireless channels, total sensed channels, and vacant
sensed channels at each location of IoTD, respectively. It is
observed that N ∈ S ∈ M . In addition, let e denote the energy
consumed for sensing a wireless channel. Table I summarizes
the key notations used in this article. Accordingly, the problem
P is formulated as follows:

P � min
{xi}

(
M∑
i

(xi × e)

)
(1)

s.t. ‖M‖ ≥ n (2)

n ∈ N (3)

xi =

{
1 if ith channel is sensed

0 otherwise
(4)

where ‖M‖ is the size of M . Constraint (2) ensures that there
are sufficient number of vacant channels to satisfy the IoTD;
otherwise, all the channels in M must be sensed, and an opti-
mal solution is unnecessary. On the other hand, it is obtained
that S = {xi|xi = 1}. As defined in Section I, the PS ratio

is given by

PS =
‖N‖
‖S‖ . (5)

It is seen that the minimization of P and the maximization
of PS are equivalent and they are obtained if and only if the
differential (Δ) between S and N (i.e., Δ = ‖S‖ − ‖N‖) is
minimum. Therefore, P can be expressed as follows:

P � min
S

Δ (6)

s.t. (2), (3), (4)

‖N‖ ≥ n. (7)

Because of the uncertainty of the environment, there is in-
sufficient information for the IoTD to make an efficient sensing
decision. In other words, P is a problem with insufficient con-
ditions and it is unresolvable directly. However, from a heuristic
approach perspective, the optimal solution for problem P can
be approximately achieved if vacant channels are prioritized to
be selected for sensing.

IV. SENSING EFFICIENCY OPTIMIZATION

Aiming at the target “vacant channels should be selected for
sensing,” we propose the PDFS approach, adopting the following
methodology.

1) Develop a time-dependent function to estimate the va-
cancy probabilities of wireless channels in every location.

2) In a location, IoTDs decide to sense the wireless channels
on the basis of the estimated vacancy probabilities in
a descending order. The IoTDs terminate their sensing
operations when either their requirements are fulfilled or
all the channels are sensed.

To enable the above methodology, the PDFS approach has
been designed as a centralized model, wherein a CC at the macro
eNB performs the vacancy probability estimation and dispatches
appropriate sensing policies to the IoTDs. In the scope of this
article, we consider the channel availability, and all channels
that are sensed and detected vacant are equally considered to
be assigned. However, it is worth noting that our design can
adopt any channel selection/allocation strategy, e.g., the channel
quality.

A. Vacancy Probability Estimation

Regarding the location dependency, we rasterize the coverage
area of the macro eNB into a location matrix. The vacancy
probability vector V is estimated for each matrix element, which
reflects our knowledge about the channels’ status. Initially, Vj

at the jth location is given by

Vj = {vij}, i = 1, 2, 3, . . . ,Mj (8)
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Fig. 2. Time-dependent vacancy probability vij [t] for various values of vij [0]
with a decay factor λ equal to 0.05.

where the vacancy probability vij of the ith channel at jth
location is primitively specified by the following policy:

vij

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

= 0.5 if there is no information of the ith

channel

∈ [0, 0.5) if the ith channel is occupied or previous

sensing on this channel is negative

∈ (0.5, 1] otherwise.
(9)

On the contrary, it is seen that the channels’ status also
depends on the time of the IoTDs. To handle the time de-
pendency, we transform Vj into a time-dependent function
Vj [t] = {vij [t]}, which decays the knowledge of the channel
status backward at ∅ as t tends to ∞.

In addition, from (9), it is observed that vij [0] = 0.5,∀i, j.
We select this value as a convergence point when applying
decay feature to the vacancy probability. Hence, the vacancy
probability of the ith channel is

vij [t] = 0.5− (0.5− vij [t− 1])× e−λt (10)

where decay factor λ represents the decay speed of the truth-
fulness about the channel status observed. In general, λ is
selected on the basis of IoT service lifetime distribution, which
usually adopts the Poisson point process [22]–[24]. The λ se-
lection ensures that the decay duration approximates the mean
of IoTs’ service lifetime when vij [t] ∼ 0.5. Fig. 2 plots the
time-dependent vacancy probability vij [t] for various values of
vij [0] with a decay factor λ equal to 0.05. It is seen that the
vacancy probability decreases to approximately 0.5 after 100
time slots.

To immediately reflect the channel status observed, we use
a trigger-update policy to renew the vacancy probability of
wireless channels. In particular, whenever the CC receives a
sensing report from the IoTDs, the vacancy probability is up-
dated accordingly. Let Rj = {rij | i = 1, 2, . . . ,Mj} denote
the sensing report observed, where rij is the sensing result of

Fig. 3. Example of trigger-update policy on time-dependent vacancy probabil-
ity vij [t]with vij [0] = 0.5when rij [20] = 1, rij [60] = 0, and rij [100] = ∅.

the ith channel at the jth location. Here, rij is given by

rij =

⎧⎪⎨
⎪⎩
0 if the ith channel is sensed and it is occupied

1 if the ith channel is sensed and it is vacant

∅ otherwise.
(11)

Among the channels in which rij values are equal to 1, several
channels will be assigned to the IoTD for its communication re-
quirements afterward. Because these channels will be occupied
by the IoTD, their corresponding rij values are updated to 0
in order to reflect the upcoming occupation. Finally, the CC
performs trigger updates on every element rij [t] of the current
Vj [t] based on the received sensing report Rj as follows:

vij [t] =

{
rij if rij 	= ∅

vij [t] otherwise; see (10).
(12)

Fig. 3 illustrates an example of the trigger-update policy on
a time-dependent vacancy probability vij [t] with vij [0] = 0.5.
The value of vij [t] remains 0.5 when t ∈ [0, 20). When t = 20,
vij [t] is reset to 1 because the corresponding rij [20] = 1, indicat-
ing that the wireless channel is vacant at time slot 20. Similarly,
vij [t] jumps to 0 at time slot 60 because the corresponding
rij [60] = 0, owing to the channel occupation. In particular, when
rij [100] = ∅ at time slot 100, the vacancy probability vij [t]
keeps its decay trend similar to the previous behavior because
the channel was not sensed.

B. Cognitive Sensing Operation

The pseudo codes of operations in the CC and IoTDs are
demonstrated in Algorithms 1 and 2, respectively. Referring to
these algorithms, two typical procedures are derived, which are
for IoTD broadcasting and D2D communications in the network.

1) IoTD Broadcasting Communication: In broadcasting
communication, IoTD requests CR resources to broadcast their
data to every IoTD in their proximity. Prime examples of
broadcasting applications include shopping advertisement, no-
tification alarm, and tourist information kiosk positioning [25],
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Algorithm 1: Central Coordinator Operation.

1: Initiate Vj = {vij = 0.5|∀i};
2: Activate decay feature to ∀i, j as in (10);
3: if IoTD broadcast resource request receive then
4: Send the current set Vj [t] according to the IoTD

location;
5: if IoTD D2D resource request receive then
6: Calculate the temporary sets as in (13);
7: if IoTD participates in k pairs of communications

then
8: Calculate the temporary set as in (14);
9: Send the current set Vj [t] according to the IoTDs’

location;
10: if a sensing report receive then
11: Update vij [t]|∀i, j as in (12);
12: Assign ε vacant channels to the IoTD as its request;
13: Reset vij [t] = 0|∀i, j ∈ {the ε channels}.

Algorithm 2: IoTD Operation.
1: if broadcast resources are needed then
2: Send a broadcast resource request to the CC;
3: if D2D resources are needed then
4: Send a D2D resource request to the CC;
5: if a probability set Vj is received then
6: Descending (Vj);
7: repeat vij ∈ Vj

8: Sense the ith wireless channel by its probability as in
vij ;

9: until ∀vij are sensed OR ε vacant channels are found
10: Update the sensing report Rj by (11);
11: Send the Rj to the CC;
12: if a vacant channel list assignment is received then
13: Use the assigned channels for communications.

[26]. Such one-way communications do not require responses
from the receivers. Therefore, once the CC obtains a cognitive
broadcasting request of ε wireless channels from an IoTD, the
CC responds by sending the current vacancy probability set
Vj [t] according to the IoTD location; see (10) and (12). In
its turn, the IoTD contiguously senses the wireless channels
with their probability vij [t] values in a descending order. The
sensing operation is terminated when either ε vacant channels
are detected or all of the channels are sensed. The corresponding
sensing results are stored in the sensing report Rj following the
definition in (11). When the CC receives the sensing report, ε
vacant channels are assigned to the IoTD for its broadcasting
communication. Accordingly, the current vacancy probability
set Vj [t] is updated by (12). Corresponding pseudo codes are
presented in Algorithm 1 except Lines 5–9 and Algorithm 2
except Lines 3–4.

2) IoTD D2D Communication: In D2D communications
(1:1, 1:k, or k:k models), multiple IoTDs request CR resources
for mutual communication. There are various peer-aware
applications such as content sharing, multiplayer gaming, and

relay-transmission assistant. In such communications, multiple
IoTDs might be located at different locations, which generally
possess different vacancy probability sets Vj [t]. Hence, when
the CC receives D2D communications from IoTDs, the current
vacancy probability sets of each IoTD pair are temporarily
averaged in advance. These temporary sets V̄A[t] and V̄B [t]
between IoTDs A and B are given by

V̄A[t] = V̄B [t] =

{
vAij [t] + vBij [t]

2
, i = 1, 2, 3, . . . ,M, ∀j

}
.

(13)
If an IoTD participates in k pairs of communications, its

temporary set V̄j [t] is given by

V̄j [t] =

{
max

t=1,2,...,k
(v̄tij [t]), i = 1, 2, . . . ,M

}
(14)

where v̄tij [t] is the temporary vacancy probability of the ith
channel on the tth pair.

The temporary sets of vacancy probability respond to the
IoTDs. In their turns, the IoTDs sense the wireless channels
with the received probabilities, and then report the sensing
results to the CC. Based on the sensing reports received from
the IoTDs, the CC performs resource allocation algorithms to
distribute the vacant channels among IoTDs. Corresponding
pseudo codes are presented in Algorithm 1 except Lines 3–4
and Algorithm 2 except Lines 1–2. Depending on the utilized
resource allocation algorithms, the IoTDs might perform
additional sensing operations. The selection of the resource
allocation algorithm is beyond the scope of this article; for ref-
erence, plenty of such algorithms are introduced in [2] and [27].

C. Practical Implementation

In terms of computational complexity, the main workload of
vacancy probability estimation is generated by (10) to determine
Vj [t]. In (10), the e−λt element has a time complexity ofO(10α),
where α indicates the number of fractional digits of −λt. As
derived from our thorough experimental analysis, α should be 2
in order to provide appropriate algorithmic results; meanwhile,
a larger α has an insufficient impact on the result with a much
higher computational cost. From a space complexity perspective,
the memory size occupied by Vj [t] is deterministic, and this
memory is updated regularly after a time slot duration or after
a sensing report is received. That is, the space complexity of
the vacancy probability estimation is O(1). It is worth noting
that the Vj [t] estimation is performed by the CC, which has a
significant computational resource.

For cognitive sensing operation, IoTDs receive a vacancy
probability set from the CC and then sense the wireless channels
with their probability vij [t]. The sensing results are stored in a
sensing report Rj with a constant dimension. Therefore, both
time and space complexities of the cognitive sensing operation
are O(1). In other words, the proposed sensing algorithm can
be implemented in lightweight IoTDs without any significant
computational issues.

Regarding security exploitation, in the case a malicious agent
tries to exploit the decay function to optimally select signaling
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TABLE II
SIMULATION CONFIGURATIONS

for resources at optimal time points to ensure maximal resources
occupation, the malicious agent must have knowledge of time
points and demand which are going to be. However, in prac-
tical CR systems (e.g., Spectrum Access Systems [28] in the
United States by the Federal Communications Commission, and
Licensed Shared Access [29] by the European Telecommunica-
tions Standards Institute in Europe), the number, locations, and
demand of other users are confidential, i.e., unknown. For that,
it is impractical for any device/user to predict the trigger update
points in all channels. In other words, our design is practically
protected from being compromised.

V. PERFORMANCE EVALUATIONS

A. Simulation Model

To evaluate SE improvements of the proposed PDFS algo-
rithm, a simulation network topology of 1 km× 1 km dimension
was developed on the OPNET framework [30]. A CC located
at the macro eNB manages all the cognitive communications
in the topology. The IoTDs are located randomly. Among these
IoTDs, the number of infrastructure-aided IoTDs are in the range
of (0, 500) devices, which have an operational duration of (5,
50) s. During each time slot, there are random requests from
10% IoTDs, resulting in average broadcast and D2D communi-
cations of (0, 20) and (0, 30), respectively. Detailed simulation
configurations are described in Table II.

The proposed PDFS algorithm was compared to the optimal
directional cognitive sensing (ODCS) scheme [12] and spatial–
temporal cognitive sensing (STCS) scheme [13] to reflect the
sensing performance in both directional and omnidirectional
sensing environments. The ODCS scheme provides selective
channel sensing by deactivating wireless beam transceivers that
might result in collisions. Meanwhile, the STCS scheme as-
sumes a random sensing rate that temporarily depends on the
location.

Fig. 4. Total sensing duration for all IoTDs in the network.

The simulations were conducted for 1000 s for each system
configuration set. Typically, this setting results in 10 000 output
samples per evaluation. For a comprehensive comparison, the SE
performances were evaluated by the following three key metrics.

1) SD, which determines the time taken by the IoTDs for
sensing activities. The SD metric represents sensing time
efficiency.

2) PS ratio, as illustrated by (5). The PS ratio indicates
sensing decision accuracy.

3) EC, which is the amount of energy consumed by the IoTDs
for sensing operations. The EC metric indicates sensing
EE.

B. Numerical Results

Regarding the sensing time efficiency, Fig. 4 depicts the total
SD of the IoTDs consumed in 1000 s for their cognitive com-
munications. It is observed that the total SD metrics in all three
simulated schemes are directly proportional to the IoTD density
in the network. This is because larger number of IoTDs results
in high channel occupation as well as collision. Therefore,
infrastructureless IoTDs must reduce their channel utilization
time and re-sense vacant channels more frequently. For instance,
the numerical results show that the IoTDs take (1.5, 1.9, 2.3) and
(15.3, 17.1, 26.7) ms for sensing activities when the number of
IoTDs in the network are 5 and 50 devices, respectively, by
applying the (PDFS, ODCS, STCS) schemes. Although these
schemes possess the same behavior, the proposed PDFS scheme
performs better than the ODCS and STCS schemes by 10.53%
and 42.70%, respectively, in terms of SD reduction. The PDFS
scheme prioritizes sensing highly possible vacant channels by
learning environmental conditions, while the ODCS scheme
deactivates several adjacent channels among IoTDs to avoid
interference, and the STCS scheme detects vacant channels on
the basis of random sensing.

In terms of sensing decision accuracy, Fig. 5 shows a sig-
nificant improvement of the PDFS scheme compared to the
others. The average PS ratio achieved by the PDFS scheme
is 69.30%. This is a 20.30% and 26.60% increase over the
average PS ratio achieved by the ODCS and STCS schemes,
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Fig. 5. Positive sensing ratio versus the number of IoTDs.

Fig. 6. Total energy consumption depending on IoTD density.

respectively. In addition, when the number of IoTDs in the
network increases from 5 to 50, the PS ratios of the PDFS
scheme only decreases by 6.94%; meanwhile, the ratios in the
other schemes decrease by approximately 22.01%. The rationale
behind these improvements is that the ODCS and STCS schemes
cannot adapt well to the environmental dynamic as the PDFS
scheme does.

From the sensing EE perspective, Fig. 6 illustrates the total
EC the IoTDs generated during the 1000-s simulation when
the IoTD density is adjusted. It is clearly seen that the total
EC increases if the number of IoTDs in the network increases.
As shown in Fig. 4, the increase in IoTD density expands the
SD and leads to higher sensing faults. These effects make the
IoTDs consume significant energy for their sensing activities.
Nevertheless, the proposed PDFS scheme outperforms the other
schemes by reducing the total EC up to 31.03% (ODCS scheme)
and 68.58% (STCS scheme).

In addition, Fig. 7 plots the relation between the total EC
and the operational duration of IoTDs. Based on an analysis of
Figs. 4 and 6, without loss of generality, we fixed the number
of IoTDs to be 25 devices, which were randomly positioned in

Fig. 7. Total energy consumption depending on operational duration of IoTDs.

the network. The graph shows two inverse directions: One is
proportional to the operational duration of IoTDs (i.e., STCS
and ODCS schemes) and vice versa (i.e., the proposed PDFS
scheme). It is true that a longer operational duration of the
IoTDs results in more channel resource usage. In other words,
there are fewer vacant channels in the network. Therefore, the
STCS and ODCS schemes consume significant energy to sense
a large amount of channels in order to detect vacant ones. On
the contrary, the PDFS scheme senses channels in the prox-
imity with their vacancy probabilities. Note that the vacancy
probability of 0.5 is equivalent to a random sensing. Therefore,
when the operational duration of the IoTDs is short, the vacancy
probabilities quickly decay to 0.5. Hence, this behavior makes
the PDFS scheme have similar performance to that of the STCS
scheme. However, when the operational duration of the IoTDs
increases, the vacancy probabilities reveal the advantages of
medium learning. Accordingly, the wireless channels are only
sensed by their appropriate probabilities in descending order,
i.e., a smaller number of highly possible vacant channels is
sensed by the PDFS scheme. This results in a decrease in the total
EC. Numerical evaluation demonstrates that the PDFS scheme
is able to reduce the total EC up to 60.65 and 74.43% compared
to the ODCS and STCS schemes, respectively.

VI. CONCLUSION

By utilizing probabilistic decay features to sensing decisions
during each medium scanning iteration, the proposed PDFS
algorithm provides significant SE improvement in terms of time
and energy efficiencies as well as PS ratio for establishing
cognitive D2D communications in 5G-and-beyond networks.
In addition, the PDFS algorithm possesses low computational
complexity, making it suitable for hardware-constrained IoTDs.
Despite these advantages, the centralization architecture of the
PDFS algorithm might generate a control overhead between the
central controller and the IoTDs. Therefore, a decentralization
transformation and/or overhead reduction should be studied in
the future. Moveover, owing to the nature of channel competition
for resource occupation, security issues (e.g., sensing signal
jamming, flooding, and spoofing attacks) should be comprehen-
sively investigated in future study.
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