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Abstract—We consider a compressive wideband spectrum
sensing for low-power IoT devices as secondary users(SUs).
We present the proposed scheme for cost-effective compressive
sensing for wideband spectrum sensing with a large number of
distributed SUs. SUs have a single RF-chain for the compressive
sensing and the measurement samples obtained at each SU are
sent to the fusion center. The fusion center performs the proposed
algorithm which estimates the minimum measurement samples
for the reconstruction process. Among the total measurement
samples by SUs, the rest of the samples except for the minimum
number of samples are used for cooperative spectrum sensing.
The original signal vector with the minimum measurement
samples is reconstructed and cooperative gain is obtained by
using the remainder of measurement samples effectively. We
compare the performance of the proposed algorithm with the
conventional compressive sensing scheme and the result shows
that the proposed algorithm has better performance specially at
the high sparsity order region.

Index Terms—Compressive sensing, Wideband spectrum sens-
ing, Sparsity order estimation, Signal recovery

I. INTRODUCTION

As wireless communication traffic increases, the problem of
insufficient frequency resources becomes more and more, and
cognitive radio technology, a frequency sharing technology,
has emerged. Cognitive radio has been proposed to effectively
use the frequency spectrum used by primary users(PUs) with
low efficiency. Spectrum sensing and dynamic spectrum access
are required as essential techniques in order for Secondary
Users(SUs) to effectively use license bands without interfering
with PUs. The spectrum sensing process is the first step that
the SU needs to perform in order to detect whether the user
is within the license band frequency. How accurately the SU
detects the PU is the most important and essential process
because it significantly affects the performance of the SU
network and interference on the PU network. For this reason,
a variety of spectrum sensing methods have been extensively
studied among the fields of cognitive radio research [1]. In
particular, as the frequency band of interest increases, the
opportunity to use the frequency increases, leading to more
research on wideband spectrum sensing.

Wideband spectrum sensing is a technique that detects
spectrum of frequency bandwidth that exceeds the coherence
bandwidth of the channel. Among various wideband spectrum
sensing methods, compressive sensing has been in the spotlight
in the research field [2] [3], Since this approach mitigates high
sampling rates, high computational complexity, and hardware

cost issues. According to the compressive sensing theory,
a signal having a sparse characteristic in a certain domain
can be compressed with the far less number of measurement
samples and correctly reconstructed to the original signal.
Given a K-sparse signal x of length N , the minimum number
of measurement samples for some constant c > 0 is well
known as M ≥ cKlog(N/K). In the wireless communication
channel environment, the sparsity order of frequency spectrum
changes over time. Therefore the degree of sparseness of
the spectrum cannot be known until the spectrum is sensed.
As a result, it is difficult to know the minimum number
of measurement samples required for the compressive sens-
ing. For this reason, the majority of studies of wideband
spectrum sensing algorithms with compression sensing use
the maximum sparsity order obtained from the statistical
characteristic of the frequency spectrum. The reconstruction
can be correctly performed with the sufficient number of
measurement samples set by the maximum sparsity order in
advance. However, in the case of sensing a spectrum with
low sparsity, the inefficiency of acquiring more samples arises
even though it can be reconstructed with a small number of
samples. Hence, estimating the sparsity order or estimating
the minimum number of measurement samples should be
considered an essential process for cost-effectively performing
compressive sensing for wideband spectrum [5]. In order
for low-power IoT devices to use spectrum as SUs, low
hardware cost and power-efficient system configuration are
required. In this paper, we propose algorithms that performs
compressive sensing by multiple low-power IoT devices with a
single RF-chain, and performs cooperative reconstruction with
the minimum number of samples obtained by the proposed
minimum measurement sample estimation algorithm.

The rest of the paper is organized as follows. In Section
II, the basic concept of CS is reviewed. We describe the
system model briefly and the proposed algorithm is covered in
Section III. Simulation results and analysis are then presented
in Section IV. Finally, we conclude in Section V.

II. COMPRESSIVE SENSING

Compressive sensing is a method to compress a original
signal with a sparse characteristic in a certain domain to much
fewer samples and reconstruct to the original signal [4] [6].
Assume that there are a signal vector s and a measurement

424978-1-7281-6758-9/20/$31.00 ©2020 IEEE ICTC 2020

Authorized licensed use limited to: Carleton University. Downloaded on May 30,2021 at 03:44:08 UTC from IEEE Xplore.  Restrictions apply. 



matrix Φ, then the M × 1 measurement vector y can be
represented as

y = Φs (1)

where the N × 1 vector s is a sparse signal with K � N
non-zero elements and the measurement matrix Φ is a M×N
matrix. The compressive sensing theory states that a signal
can be recovered from M ≥ cKlog(N/K) measurements for
some constant c > 0, provided the signal has the sparsity
order of K [7]. If the signal is not sparse, the signal can be
considered as a sparse signal in a certain domain through the
N ×N sparsity basis matrix Ψ. The elements of the measure-
ment matrix can be composed of random elements such as
Gaussian or Bernoulli random distribution. The measurement
vector y can be rewritten as

y = Φx = ΦΨs (2)

If the size of the measurement vector y is greater than
the minimum number M determined by N and K, then
reconstruction is correctly performed by solving the following
l1-norm optimization problem [4] [6]

ŝ = argmin
s

‖ s ‖1 s.t. y = ΦΨs (3)

III. SYSTEM MODEL & THE PROPOSED ALGORITHM

A. System Model

We consider a SU network comprising of L SUs which have
a single RF chain for compressive sensing and a centralized
fusion center. The number of SUs, L, is assumed sufficiently
larger than the minimum required measurement samples for
the reconstruction, M (L � M ). The frequency range of
interest consists of N non-overlapping channels and PUs
occupy only a small portion of the channels at each instance of
time. Each SU performs compressive sensing periodically, and
the measurement samples acquired by compressive sensing are
sent to the fusion center. Subsequently, the collected measure-
ment samples are cooperatively reconstructed to the original
signal through the proposed algorithm at the fusion center and
state of each channel slot is determined. Our proposed scheme
consists of three steps as follows: 1) Compressive spectrum
sensing at each SU and data fusion at the fusion center,
2) Minimum number of measurement samples estimation, 3)
Cooperative spectrum state decision.

B. Compressive spectrum sensing at single SU and data fusion
at the fusion center

Each of SU receiver l, l = 1, ..., L collects time-domain
samples yl from the channel energy vector s. When the
SU receivers obtains the measurement sample, a row vector
{φl}Ll=1 of L × N measurement matrix Φ is used as a
measurement vector. The sensing process that occurs at l-th
SU is as follows

yl = φlF
−1
N s+ wl (4)

Algorithm 1: Minimum number of measurement sam-
ples estimation
Input : ρthres,Mstep, y,Φ
Output : M̂

1 for i = Mmin to L do
2 ŝi = argmin

s
‖ s ‖1 s.t. y1:i = Φ1:iF

−1s

3 ρi := maxE[ŝi(m+ n)ŝ∗i−1(n)]
4 if ρi > ρthres then
5 M̂ := i stop iteration
6 else
7 i := i+Mstep

8 end if
9 end for

10 return M̂

where the M ×1 vector s is the channel energy vector and wl

is the white gaussian noise. F−1
N denotes the N points inverse

Fourier transformer. The measurement samples obtained by
(4) are sent to the fusion center. We assume that the channel
states between SUs and the fusion center are known to each
other. The fused data at the fusion center can be written as
follows

y = ΦF−1
N s+ w (5)

where Φ = [φT
1 , ..., φ

T
l , ..., φ

T
L]

T ∈ RL×N

C. Minimum number of measurement samples estimation

Without knowing K, through the result of reconstructed
sample values compare serially reconstructed vector and cal-
culate correlation of reconstructed vectors Mstep and ρthres
are predetermined parameters for the algorithm

The minimum sparsity order Kmin is known as prior
information through the statistical characteristics of the spec-
trum. Based on the minimum sparsity order Kmin, minimum
required number of samples for reconstruction Mmin can be
achieved. Mmin is used as the initial value for the Mini-
mum number of measurement samples estimation algorithm.
The channel energy vector s is reconstructed repeatedly by
increasing the size of measurement sample vector y1:i and
measurement matrix Φ1:i by the predetermined parameter
Mstep, where y1:i = [y1, ..., yi]

T ,Φ1:i = [φT
1 , ..., φ

T
i ]

T .
Original signal vectors obtained in each iteration process are
used to calculate cross correlation and the cross correlation
value ρi at i-th iteration is compared with the predetermined
threshold value ρthres in every iteration. If ρi exceeds ρthres,
the iteration stops and the minimum number of samples is set
as i.

D. Cooperative spectrum state decision

With the minimum number of measurement samples, M̂ ,
which is obtained through Algorithm 1, the number of sets
for the cooperative spectrum state decision, Ncoop, is de-
cided. The reconstruction of the original signal is performed
sequentially for Ncoop times with the measurement sample
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Algorithm 2: Cooperative spectrum state decision

Input : y,Φ, M̂ , γthres
Output : D
Initialization: Ncoop := �L/M̂�

1 for j = 1 to Ncoop do
2 ŝj = argmin

s
‖ s ‖1

s.t. y(j−1)M̂+1:jM̂ = Φ(j−1)M̂+1:jM̂F−1s

3 dj(i) =

{
1 ŝj(i) ≥ γthres

0 otherwise
4 end for

5 D(i) =




1

Ncoop∑
j=1

dj(i) > 0, OR Rule

0 otherwise
6 return D

vector y(j−1)M̂+1:jM̂ = [y(j−1)M̂+1, ..., yjM̂ ]T ∈ CM̂×1

and the subset of the measurement matrix Φ(j−1)M̂+1:jM̂ =

[φT
(j−1)M̂+1

, ..., φT
jM̂

]T ∈ RM̂×N . After the reconstruction
process, each element of the estimated original signal vector
is compared with the predetermined threshold value γthres,
making a bianry hard decision, and as a result, dj is obtained.
The dj(i) obtained by the j-th estimated original signal vector
represents the state of the i-th slot in the spectrum. Finally,
when Ncoop number of binary decision vector d are obtained,
the binary decision vectors are cooperatively fused as D by a
fusion rule. In this paper, we applied OR rule for the algorithm
as an example.

IV. SIMULATION AND ANALYSIS

In this section, we present the performance comparison
of the proposed widebnad spectrum sensing algorithm with
the conventional wideband compressive sensing algorithm. In
the simulation, We consider wideband of frequency spectrum
which is separated into 1024 non-overlapping sub-channels
and L = 300 distributed SUs. PUs randomly use the sub-
channels according to the sparsity order. The performance
metrics of interest are detection probability Pd and false alarm
probability Pf . We evaluated the probability of detection Pd

with a different sparsity order at a fixed false alarm probability,
Pf = 0.1. The signal to noise ratio was also fixed to
10dB in the simulation. As the Fig.1 illustrates the proposed
scheme has much better performance for high sparse frequency
spectrum. In the proposed technique, the cross-correlation
values are obtained using sequentially reconstructed original
signal vectors, thereby determining the minimum number of
samples. For this reason, the lower the correlation threshold
ρthres is, the smaller the minimum number of samples tends
to be estimated. Although it shows the proposed scheme
has a slightly low performance in the low sparsity region,
it represents high performance through cooperative gain and
spatial diversity gain in general.
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Fig. 1. Detection probability versus K, the number of nonzero element in
the original signal vector s.

V. CONCLUSION

We proposed a cooperative compressive spectrum sensing
scheme specially for low-power IoT devices. The proposed
scheme estimates the minimum measurement samples and the
samples exceeding the minimum number of samples were
used for cooperative spectrum sensing. We presented the
performance of the proposed scheme has better performance
by spatial diversity at high sparsity order region.
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