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Radiative Properties of 
Opaque Materials

Josef Stefan (1835–1893) published nearly 80 scientific articles, mostly in the 
Bulletins of the Vienna Academy of Sciences. He is best known for originating 
Stefan’s law in 1879, which states that the total radiation from a black body is 
proportional to the fourth power of its absolute thermodynamic temperature T. 
In 1884, the law was derived from a thermodynamic analysis by Stefan’s student 
Ludwig Boltzmann and hence is known as the Stefan–Boltzmann law.

Ludwig Eduard Boltzmann (1844–1906) made seminal contributions to the 
kinetic theory of gases and on heat transfer by radiation, but is probably best 
known for his invention, independently of J. Willard Gibbs, of statistical mechan-
ics and the formulation of entropy on a microscopic basis. He derived Stefan’s 
fourth power law for radiation emission by considering a heat engine with light as 
the working fluid. Boltzmann’s epitaph in the Central Cemetery in Vienna reads

Ludwig Boltzmann
1844–1906
S = k log W

3.1  INTRODUCTION

Detailed radiation transfer predictions require knowledge of the spectral or total radiative prop-
erties of surfaces and the media between them. Some of these properties may be measured, 
although experimental conditions often depart from those of practical applications. As we discuss 
in Chapter 8, properties of optically smooth interfaces can be derived using electromagnetic (EM) 
wave theory. While it is usually inadequate to quantify the properties of real-world surfaces that 
are not perfectly clean and optically smooth, EM theory often yields useful trends and provides 
a unifying basis to help explain radiation phenomena. This chapter reports radiative properties 
of several opaque materials as a function of different parameters. It begins with a brief introduc-
tion to dielectric and electrically conducting materials. Examples of measured properties of real 
opaque materials are presented, along with comparisons with those obtained from EM theory pre-
dictions. Surface roughness and contamination can influence radiative properties, particularly the 
directional-spectral emissivity and reflectivity, and we introduce some theories to account for these 
effects. Finally, we demonstrate how radiative properties can be selected for important applications, 
notably those related to solar energy.

We will not make any attempt to provide comprehensive radiative property data in this text. 
However, a selective property table is given in Appendix B. Extensive tabulations and graphs 
of radiative properties are available in the literature, including Wood et  al. (1964), Svet (1965), 
Touloukian and Ho (1970), Touloukian and DeWitt (1972a), Touloukian et al. (1972b), Henninger 
(1984), Palik (1998), Fox (2001), Seo et al. (2019, for cryogenic temperatures), and Rumble et al. 
(2018, 2019), as well as recent journal articles for particular materials.
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96  Thermal Radiation Heat Transfer

3.2  ELECTROMAGNETIC WAVE THEORY PREDICTIONS

James Clark Maxwell (1864) provided the crowning achievement of classical physics that explained 
the relation between electric and magnetic fields. Maxwell’s EM wave equations provide the required 
framework for obtaining the radiative properties of opaque materials and surfaces. For “optically 
smooth” surfaces, these equations can be used to obtain spectral-directional reflectivity, transmis-
sivity, absorptivity, and emissivity from the optical and electrical properties of the bulk material. In 
this context, “optically smooth” means that surface imperfections, roughness, or texture are much 
smaller than the wavelength of the incident radiation to the extent that they do not affect the far-field 
wave-fronts, and wave/surface interactions are strictly specular (mirror-like) in nature. (The term 
specular must not be confused with spectral, which indicates a wavelength-specific attribute).

Maxwell’s equations govern how EM waves behave at the interface between two media. These 
calculations require the complex index of refraction, n n ik= - , which describes how the wave 
propagates through the medium, as discussed in Chapter 8. This quantity is always wavelength-
dependent, although this notation is often excluded. It is sometimes convenient to instead work with 
the complex dielectric constant ε ε ε= -I IIi . These quantities are related by

 ε εI II= - =n k nk2 2 2,  (3.1)

and

 n k2 22 2 2 21
2

1
2

= ( ) = -( )+ + + +ε ε ε ε ε εI I II I I II, .  (3.2)

The departures of real surfaces from the ideal conditions assumed in theoretical predictions (e.g., 
due to roughness and contamination) often result in large differences between modeled and mea-
sured properties. Despite these limitations, EM theory provides an understanding of why there 
are basic differences in the radiative properties of insulators and electrical conductors and reveals 
general trends that help unify presentation of experimental data. As discussed in Chapter 8, EM 
wave theory also explains the angular dependence of directional reflectivity, absorptivity, and emis-
sivity for smooth surfaces. Finally, since the theory applies to pure substances with ideally smooth 
surfaces, it also provides a means for computing a limit of attainable properties, such as maximum 
reflectivity or minimum emissivity of a metallic surface.

3.2.1  Dielectric Materials

3.2.1.1  Reflection and Refraction at the Interface between Two 
Perfect Dielectrics (No Wave Attenuation, k → 0)

A medium is a perfect dielectric if it does not absorb incident radiation. Then, the complex index 
of refraction of a dielectric medium is expressed only with its real component n, as k is zero. The 
imaginary term of the complex dielectric constant is also equal to zero, so ε ε ε= =I . While this is 
an idealization, it is quite a good approximation for many interfaces, such as air–water or air–glass 
interfaces for the visible spectrum, but only in the portion of spectrum where k = 0. For example, 
window glass behaves as a perfect dielectric over visible wavelengths; in the near-infrared spectrum 
(beyond approximately 2.2 μm, as discussed in Section 9.7), windows are opaque.

Consider an EM wave traveling through a dielectric medium with refractive index n1, which 
encounters the smooth planar interface of a second medium with a refractive index n2. If the angle 
of the incidence onto the surface of medium 2 is θi, then the wave is refracted into medium 2 at 
angle χ. The angle of incidence of θi, reflection θr, and refraction χ, which are all in the same plane 
(Figure 3.1), are related through Snell’s law

 n n n1 1 2sin sin sini rq q c= =  (3.3)
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which results in

 q qi r= .  (3.4)

The angle of reflection of an EM wave from an ideal interface is thus equal to its angle of incidence 
rotated about the normal to the interface through a circumferential angle of θ = π. Equation (3.3) can 
be rearranged into

 
sin

i

c
qsin

.= =n
n

1

2

1

2

ε
ε

 (3.5)

The energy carried by a wave is due to variation in both the electric field, E, and the magnetic 
field, H, which, according to Maxwell’s equations, fluctuate in mutually orthogonal directions. The 
relative amplitudes of these fluctuations depend on the electrical permeability and magnetic per-
mittivity of the medium through which the wave propagates. The energy of the propagating wave 
is proportional to the product of the amplitudes of these fluctuations, or, since H is proportional to 
E, to the square of the wave amplitude of E (or H, for that matter), and is properly expressed as the 
Poynting vector. Squaring the amplitude ratio of reflected to incident amplitude gives the ratio of 
energy reflected from a surface to energy incident from a given direction.

We can also resolve the electric and magnetic fields into orthogonal polarization components 
which sum to the total intensity. It is convenient to define the polarization components relative to 
the plane of incidence and the oscillating plane of the electric field. The perpendicular and parallel 
components oscillate perpendicular and parallel to the incidence plane, respectively, and both are 
perpendicular to the direction of the propagation.

3.2.1.2  Reflectivity
The specular reflectivity of a wave incident on a surface at angle θ and polarized parallel or perpen-
dicular to the plane of incidence is obtained from

 r q
q c
q cl,
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and
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2

 (3.7)

FIGURE 3.1 Geometric quantities for an EM wave at an interface between media 1 and 2.
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98  Thermal Radiation Heat Transfer

The subscript λ is a consequence of the fact that the refractive indices used to calculate χ depend 
on wavelength.

Useful forms containing only θi are obtained by eliminating χ in Equations (3.6) and (3.7) using 
Equation (3.5):

 r q q q
ql,

/( ) [( ) ]
( ) [

� i
i i

i

/ cos / sin
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( ) = - -
+
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n n
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The parallel reflectance component equals zero when θi = tan−1(n2/n1), which is called Brewster’s 
angle. Radiation reflected at this angle is all perpendicularly polarized.

The reflectivity for unpolarized incident radiation is given by the Fresnel equation (see Chapter 8)

 r q q c
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The average of Equations (3.8) and (3.9) is often used to obtain the angular reflectivity profile ρλ(θi) 
in terms of θi only. For normal incidence, θi = 0, and the reflectivity becomes

 r r q r rl l l l,n i
/= =( ) = ( ) = ( ) = -
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Electromagnetic theory requires the interface to be perfectly clean and optically smooth. These 
conditions are typically satisfied for lenses, windows, and other optical components, and therefore 
the optical components can be accurately modeled using the Fresnel equations for most wavelengths 
of interest. Predictions of the normal reflectivity from the EM theory for various dielectrics are 
listed in Table 3.1. Note that for most cases of interest we can take n1 = 1 (e.g., for incidence in air 
or a vacuum). Also, these relations are for an interface on an opaque material, so there is no reflec-
tion from a second internal surface in medium 2. The cases of nonopaque layers (e.g., windows and 
glazings) are considered in Chapter 17.
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Example 3.1

Unpolarized radiation is incident on a dielectric surface (medium 2) in air (medium 1) at angle 
θ = 30° from the normal. The dielectric has refractive index n2 = 3.0. Find the reflectivity of each 
polarized component and of the unpolarized incident radiation.

Because the incident intensity is in air, n1 ≈ 1, and from Equation (3.5), n1/n2 = 1/3.0 = sinχ/
sin 30°; therefore, χ = 9.6°. The reflectivity of the parallel component is, from Equation (3.6), 
ρ λ,∥(θi = 30°) = (tan 20.4°/tan 39.6°)2 = 0.202, and that of the perpendicular component is, from 
Equation (3.7), ρλ,⊥(θi = 30°) = (sin 20.4°/sin 39.6)2 = 0.301. The reflectivity for the unpolarized inci-
dent intensity, obtained from Equation (3.10) or from the average of the components, is ρλ(θi = 30°) =  
(0.202 + 0.301)/2 = 0.252.

Example 3.2

What fraction of light is reflected for normal incidence in air on a glass surface or on the surface 
of water?

For glass in the visible spectrum, n ≈ 1.55, and for water n ≈ 1.33. Then, from Equation (3.11),

 rl,
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Note that these results are only for the given portion of the spectrum.

3.2.1.3  Emissivity
One can obtain the directional emissivity from the directional reflectivity according to Kirchhoff’s 
law, as we discuss in Chapter 2. For a nontransparent (opaque) medium, we can write

 e q
r q r q

l
l l

i
i i( ) = -

( ) + ( )^
1

2
, ,�

 (3.12)

since emission is always unpolarized. As is the case for directional reflectivity, directional emis-
sivity also depends on the index of refraction of the emitting body and the surrounding medium. 
Figure 3.2 shows different curves for various n2/n1, where n2 > n1. When n2 < n1, there is a limiting 
angle such that radiation at larger incidence angles is totally reflected (total internal reflection); this 
is discussed in Section 17.5.2. When ρ(θ) is computed for incident radiation in air (n1 ≈ 1), the ratio 
n2/n1 reduces to the refractive index of the material on which the radiation is incident. Figure 3.2 
gives the emissivity of a dielectric into air when n2/n1 in the figure is set equal to the simple refrac-
tive index n of the emitting dielectric. For (n2/n1) = 1, the emissivity is one (blackbody case), and the 
curve in Figure 3.2 is circular with a radius of one.

As (n2/n1) increases, the curves remain approximately circular up to about θ = 70° and then 
decrease rapidly to zero at θ = 90°. Thus, dielectric materials emit poorly at large angles from the 
normal direction. The emissivity is large for angles less than 70°, so that, in a hemispherical sense, 
dielectrics are good emitters. The assumptions used in applying Maxwell equations restrict these 
findings to wavelengths longer than the visible spectrum, as verified by comparisons with experi-
mental measurements.

From the directional-spectral emissivity, the hemispherical-spectral emissivity can be computed 

from Equation (2.7) as e p e q f q Wl lT T d( ) = ( ) ( )
Çò1/ , , cos . Then an integration can be performed 

over all wavelengths to obtain the hemispherical total emissivity as in Equation (2.8).
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100  Thermal Radiation Heat Transfer

The integration of ελ(θ) over all directions to evaluate the hemispherical ελ is complicated, but 
the integration has been carried out to yield ε in terms of n2/n1:
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The normal emissivity is a convenient value to which the hemispherical value may be compared:
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 (3.14)

This parameter is shown as a function of n2/n1 in Figure 3.3a. Note that normal emissivities of less 
than about 0.50 correspond to n2/n1 > 6. Such large n2/n1 values are uncommon for dielectrics, so the 
curve is not extended to smaller εn. The hemispherical emissivity for dielectrics is compared to the 
normal value in Figure 3.3b.

FIGURE 3.2 Directional emissivity predicted from EM theory.
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101Radiative Properties of Opaque Materials 

For large n2/n1, the εn values are relatively low, and with increasing n2/n1, the curves in Figure 3.2 
depart more from a circular form. Figure 3.3b reveals that the flattening of the curves of Figure 3.2 
in the region near the normal causes the hemispherical emissivity to exceed the normal value at 
large n2/n1 (ελ,n ≈ 0.5−0.6). For n2/n1 near 1 (ελ,n near 1), the hemispherical ελ is lower than ελ,n 
because of poor emission at large θ.

Example 3.3

A dielectric medium has n = 1.41. What is its hemispherical emissivity into air at the wavelength 
at which n was measured?

From Equation (3.13), for n1/n2 = n = 1.41, ελ = 0.92. Alternatively, from Equation (3.14), the spec-
tral normal ελ,n = 1−(0.41/2.41)2 = 0.97, and from Figure 3.2b, ελ/ελ,n = 0.95; then the spectral hemi-
spherical emissivity is ελ = 0.97 × 0.95 = 0.92.

3.2.2  raDiative ProPerties of conDuctors

3.2.2.1  Electromagnetic Relations for Incidence on an Absorbing Medium
In the preceding section, we discussed perfect dielectrics where there is no attenuation (k = 0) of 
radiation as it travels within the material. In other words, we assumed that the material is perfectly 

FIGURE 3.3 Predicted emissivities of dielectric materials for emission into a medium with a refractive 
index n1 from a medium with a refractive index n2 where n2 ≥ n1. (a) Normal emissivity as a function of n2/n1, 
and (b) comparison of hemispherical and normal emissivity.
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102  Thermal Radiation Heat Transfer

transparent except for interface reflections. For real dielectrics, there is attenuation, so k is nonzero, 
although it is small.

The propagation of an EM wave within an attenuating medium is governed by the same rela-
tions as a nonattenuating medium if the refractive index n is replaced by the complex index, 
n n ik= - , although this leads to some complexities in interpretation, particularly at the interface 
between media. For example, in the case of an EM wave within a dielectric medium (n1) incident 
upon a conducting medium ( n n ik2 2 2= - ), Equation (3.5) becomes

 
sin
sin

.
c
qi

= =
-

n
n

n
n ik

1

2

1

2 2

 (3.15)

Consequently, sin χ is complex, and χ can no longer be interpreted as the angle of refraction for 
propagation into the material because the transmitted wave is heterogeneous (cf. Section 8.4.2). 
Also, except for normal incidence, n2 is not directly related to the wave propagation velocity.

The equations for the reflected components of incident radiation are also more complicated than 
the case of two dielectrics. One of the earlier analyses was provided by Hering and Smith (1968) 
who gave the following form for incidence from air or vacuum (n1 = 1, k1 = 0, n2 = n, k2 = k):
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The reflectance at normal incidence reduces to
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The directional emissivity can be found from Kirchhoff’s law, ελ(θ) = l − [ρλ,⊥(θ) + ρλ,∥(θ)]/2, which can 

then be integrated over the hemisphere to obtain the hemispherical emissivity, e e q ql l= ( )ò d( )sin2

0

1

, 

as a function of n and k. One set of results, for n ≥ 1, is plotted in Figure 3.4 as a function of n and 
k/n, which shows how the hemispherical emittance decreases as both n and k increase.
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These results apply for radiation incident from air or a vacuum, with n1 ≈ 1. Harpole (1980) 
presented an analysis for the more complex case of oblique incidence from an adjacent absorbing 
material.

3.2.2.2  Reflectivity and Emissivity Relations for Metals (Large k)
Usually conductors (such as metals) are internally highly absorbing; this means that the extinction 
coefficient k is sufficiently large to simplify the above equations into more convenient results. For 
large k, the sin2θ terms in Equations (3.18) and (3.19) can be neglected relative to n2 + k2. Then α ≈ 
β ≈ γ ≈ 1 and Equations (3.16) and (3.17) yield

 r q
q q

q q
l,

( )

( )
� i

i i

i i

cos cos

cos cos
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+ + ( )
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n k
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2 2

2 2  (3.22)

and
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2 2  (3.23)

For unpolarized incident radiation, ρ(θi) = [ρ∥(θi)+ ρ⊥(θi)]/2, and for the normal direction, ρn reduces 
to Equation (3.21). Emission is unpolarized, so the directional emissivity is given by Equation (3.12). 
In the normal direction (θi = 0), this becomes

 e rl l,n n= - =
+ +

1
4
1 2 2,

( )
.

n

n k
 (3.24)

These emissivity relations are demonstrated in Figure 3.5 for a pure smooth platinum surface at a 
wavelength of 2 μm, and in Figure 3.6 for a titanium surface at multiple wavelengths. For metals, 

FIGURE 3.4 Exact and approximate hemispherical emissivity results (n ≥ 1.0). (From Hering, R.G. and 
Smith, T.F., IJHMT, 11(10), 1567, 1968).
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104  Thermal Radiation Heat Transfer

FIGURE 3.5 Directional-spectral emissivity of platinum at λ = 2 μm. Refractive indices are from Lide (2008).

FIGURE 3.6 Directional-spectral emissivity of titanium at 306 ± 14 K. Surface ground to 0.4 μm rms rough-
ness. Symbols denote data from Edwards, D. K., and Catton, I.: Radiation characteristics of rough and oxidized 
metals, in S. Gratch (ed.) Advances in Thermophysical Properties at Extreme Temperatures and Pressures, 
pp. 189–199, ASME, New York, 1964. Dashed curves are predictions from EM theory using optical constants 
in Palik, E. D. (ed.) Handbook of Optical Constants of Solids, Elsevier, New York, 1998.
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the emissivity is essentially constant for θi < 50° away from the normal and then increases to a 
maximum within a few degrees of the tangent to the surface. It is evident by comparison with 
this and other experimental data from Harrison et al. (1961), Brandenberg (1963), Brandenberg 
and Clausen (1965), Price (1947), Palik (1998), and Rumble et al. (2018, 2019) that the general 
shape of the curve predicted by substituting Equations (3.22) and (3.23) into (3.12) is correct. This 
angular dependence of emissivity for metallic surfaces contrasts with the behavior of dielectrics, 
for which emissivity decreases substantially as the angle from the normal becomes larger than 
about 70°.

Normal spectral reflectivities calculated using Equation (3.24) are shown in Table 3.2. A wave-
length of λ = 0.484 μm is in the visible range, close to the short-wavelength region where the EM 
theory becomes inaccurate.

The values in Table 3.2 predicted by Equation (3.21) agree with measured ελ,n at λ = 8 μm (0.1 eV), 
but are in greater error at λ = 0.484 μm (2.4 eV). For the cases of poor agreement, it is difficult to 
ascribe the error specifically to the optical constants, to the measured emissivity, or to the theory 
itself, although the theory is expected to be less accurate at shorter wavelengths. Most probably the 
optical constants are somewhat in error, and the experimental samples do not meet the standards of 
perfection in surface preparation demanded by the theory.
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106  Thermal Radiation Heat Transfer

Within the approximation of neglecting sin2θi relative to n2 + k2, the hemispherical spectral emis-
sivity for a metal in air or vacuum is found by substituting the directional spectral emissivity found 
from Equations (3.22) and (3.23) into Equation (2.7). Integrating gives
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Without neglecting sin2θ, the hemispherical ελ was calculated by numerical integration, as shown 
in Figure 3.4, and the results were compared with those from Equation (3.25) for various n and k 
values. They found that for the accuracy of Equation (3.25) to be within 1%, 2%, 5%, or 10% of the 
numerically integrated values, n2 + k2 should be larger than 40, 3.25, 1.75, and 1.25, respectively. 
Based on the optical constants given in Table 3.2, Equation (3.25) should usually be accurate for 
most metals, within a few percent.

From Equation (3.24), the normal emissivity of both metals and attenuating dielectrics into air 
can be computed as a function of n and k. This is shown in Figure 3.7, and more complete results 

FIGURE 3.7 Emissivity of attenuating medium emitting into air.
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107Radiative Properties of Opaque Materials 

are provided by Hering and Smith (1968). For polished metals, when ελ,n is less than about 0.5, 
the hemispherical emissivity is usually larger than the normal value because of the increase in 
emissivity in the tangential direction, as shown in Figures 3.5 and 3.6. Hence, in a table listing 
emissivity values for polished metals, if ελ,n is given, it should be multiplied by a factor larger than 
unity, such as is obtained by comparing Equations (3.24) and (3.25). In the visible wavelength 
region, ελ/ελ,n is close to 1, but in the infrared (IR), some values approach 1.2. Surfaces that are 
not optically smooth and may be contaminated (e.g., by an oxide) tend to be more diffuse than 
for polished specimens.

3.2.2.3  Relations between Radiative Emission and Electrical Properties
The wave solutions to Maxwell’s equations provide a means for determining n and k from the elec-
tric and magnetic properties of a material. For highly conducting metals (electrical resistivity, re, is 
small) and for relatively long wavelengths, λ0 > ~5 μm

 n k
c

r r
r= = = ×( )l m

p
l l m0 0 0

0
4

0 003o

e e
ein m in cm

.
, W  (3.26)

where μ0 is the magnetic permeability, which for most metals can be taken to be the vacuum value. 
This is the Hagen–Rubens equation (Hagen and Rubens 1900). Predictions of n and k from this 
equation can be greatly in error, particularly at short wavelengths, as shown in Table 3.2. The 
restrictions of this equation to wavelengths greater than approximately 5 μm should be carefully 
noted.

With the conditions in Equation (3.26) that n = k, Equation (3.24) reduces to

 e - rl l, ,n n
n

n n
= =

+ +
1

4
2 2 12  (3.27)

for a material with refractive index n radiating in the normal direction into air or vacuum: Substituting 
Equation (3.26) into Equation (3.27) and expanding into a series gives the Hagen–Rubens emissivity 
relation:
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Because the index of refraction of metals as predicted from Equation (3.26) is generally large at 
longer wavelengths so that (re/λo) is small, that is, for λ > ~5 μm (see Table 3.2), one or two terms of 
the series are usually adequate. A two-term approximation is made by adjusting the coefficients of 
the second term for the remaining terms in the series to yield
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Data for polished nickel are shown in Figure 3.8, and the extrapolation to long wavelengths by 
Equations (3.29) is reasonable. The predictions of normal spectral reflectivity at long wave-
lengths (ρλ,n = 1−ελ,n), as presented in Table 3.2, are much better than the predictions of the optical 
constants.

The angular behavior of the spectral emissivity can be obtained by substituting the refractive 
index, Equation (3.26), into Fresnel’s relations, Equations (3.22) and (3.23), and this result into 
Kirchhoff’s law, Equation (3.12), to yield the spectral directional emissivity, ελ(θ). Figure 3.6 shows 
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108  Thermal Radiation Heat Transfer

that the directional spectral emissivity of titanium tends to decay with increasing wavelength, in 
accordance with Hagen–Rubens theory.

The normal spectral emissivity in Equation (3.28) can be integrated with respect to wavelength 

to yield a normal total emissivity, e p e l sl l

¥

n n b /( ) ,T T I T d T= ( ) ( )ò 4

0
. Note that Equation (3.28) 

is accurate only for λ0 > ~5 μm, so in performing the integration starting from a small value of λ 
(e.g., in the visible spectrum) assumes that the energy radiated at wavelengths shorter than 5 μm is 
assumed to be small compared with that at wavelengths longer than 5 μm. Then, substituting into 
the integral, the first term of Equations (3.28) and (1.20) for Iλb provides
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where ζ = C2/λ0 T, as was used in conjunction with Equation (1.39). The integration is carried out by 
use of gamma functions to yield
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If additional terms in the series Equation (3.28) are retained, the recommended three-term approxi-
mation for total normal emissivity of a metal is obtained (Parker and Abbott 1964)

FIGURE 3.8 Comparison of measured values with theoretical predictions for normal spectral emissivity of 
polished nickel. Hagen–Rubens predictions are calculated using electrical resistivity from Chu, T. K., and Ho, 
C. Y., Electrical Resistivity of Chromium, Cobalt, Iron, and Nickel (CINDAS Report 60), Thermophysical 
Properties Research Centre, 1982.
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109Radiative Properties of Opaque Materials 

 e -n e e e ein K in cmT r T r T r T rT( ) = + ×( )0 578 0 178 0 5841 2 3 2. ( ) . . ( ) , ./ / W  (3.32)

For pure metals, re near room temperature is approximately described by

 r r
T

e e» , .273
273

 (3.33)

where re,273 is the electrical resistivity at 273 K. Substituting Equation (3.33) into Equation (3.31) 
gives the approximate result

 en eT T r( ) » 0 0348 273. .,  (3.34)

This indicates that the total emissivity of pure metals increases directly with absolute temperature. 
This expression was originally derived by Aschkinass (1905). In some cases, it holds to unexpect-
edly high temperatures where considerable emitted radiation is in the short-wavelength region (for 
platinum, to near 1800 K), but often it applies only to temperatures below about 550 K. This is 
illustrated in Figure 3.9 for platinum and tungsten (data from Lide 2008). In Figure 3.10, the nor-
mal emissivity for various polished surfaces of pure metals is compared with predictions based on 
Equation (3.34). The experimental data are obtained from three standard compilations (Hottel 1954, 
Eckert and Drake 1959, Lide 2008).

Likewise, the spectral directional emissivity found from the refractive index, Equation (3.26), 
and the Fresnel relations, Equations (3.22) and (3.23) can be integrated over all directions to obtain 
total hemispherical quantities. The following approximate equations for the hemispherical total 
emissivity fit the results in two ranges:

 e -T r T r T r T( ) = < <0 751 0 396 0 0 2. . .e e e  (3.35)

FIGURE 3.9 Temperature dependence of normal total emissivity of polished metals.
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110  Thermal Radiation Heat Transfer

 e -T r T r T r T( ) = < <0 698 0 266 0 2 0 5. . . .e e e  (3.36)

where T and re are in units of K and Ω-cm, respectively. The resistivity re depends approximately 
on T to the first power so that the first term of each of these equations provides a T proportionality, 
indicating that the temperature dependence for energy emission by metals is higher than the black-
body dependence of T4. A different hemispherical total emissivity expression suggested by Parker 
and Abbott (1964) is

 e - - -T r T r T r T r T( ) = ( )éë ùû0 766 0 309 0 0889 0 0175 3 2. . . ln . ( ) ./
e e e e  (3.37)

Figures 3.11 and 3.12 compare predictions for normal total emissivity, Equation (3.32), and hemi-
spherical total emissivity, Equation (3.37), with experimental measurements.

Example 3.4

A polished platinum surface is maintained at T = 250 K. Energy is incident upon the surface from 
a black enclosure at Ti = 500 K that surrounds the surface. What is the hemispherical-directional 
total reflectivity into the direction normal to the surface?

The directional-hemispherical total reflectivity for the normal direction can be found from

 r an nT T=( ) = - =( )250 1 250K K  

where αn(T = 250 K) is the normal total absorptivity of a surface at 250 K for incident black radia-
tion at 500 K.

 a
a l

l

l l

l

n

n b

b

T
T I d

I d
=( ) =

= ( )

( )

¥

¥

ò
ò

250
250 500

500

0

0

K
K K

K

, ,

,

( )
.  

FIGURE 3.10 Comparison of data with calculated normal total emissivity for polished metals at 373 K.
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111Radiative Properties of Opaque Materials 

For spectral quantities, αλ,n(T = 250 K) = ελ,n(T = 250 K). From Equation (3.28) the near-linear varia-
tion of re with temperature provides the approximate emissivity variation ελ,n(T) ∝ T1/2. Then ελ,n 
(T = 250 K) = ελ,n(T = 500 K)(250/500)1/2, and we obtain
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FIGURE 3.11 Normal total emissivity of various metals compared with theory. (From Parker, W.J. and 
Abbott, G.L., Theoretical and experimental studies of the total emittance of metals, Symposium on Thermal 
Radiation of Solids, NASA SP-55, pp. 11–28, 1964).

FIGURE 3.12 Hemispherical total emissivity of various metals compared with theory. (From Parker, W.J. 
and Abbott, G.L., Theoretical and experimental studies of the total emittance of metals, Symposium on 
Thermal Radiation of Solids, NASA SP-55, pp. 11–28, 1964).
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112  Thermal Radiation Heat Transfer

where the last equality is obtained by examining the emissivity definition, Equation (2.5). The 
normal total emissivity of platinum at 500 K is given by Equation (3.34), as plotted in Figure 3.9, as

 

en T r T r Te e=( ) = =
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Note that Equation (3.34) is to be used only when temperatures are such that most of the emitted 
radiation is at wavelengths greater than 5 μm. From the blackbody functions, for T = 500 K, about 
10% of the energy is below λ = 5 μm, so a small error is introduced. The reciprocity relation of 
Equation (2.58) for uniform incident intensity can now be employed to give the desired result for 
the hemispherical-directional total reflectivity:
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3.2.3  extensions to the theory of raDiative ProPerties

Accurate EM predictions of surface properties requires precise knowledge of the refractive index or 
dielectric function of the medium. This motivates development of dispersion models that account 
for how these quantities vary with respect to wavelength. A brief discussion concerning dispersion 
models is presented below; a more complete derivation is included in Chapter 8.

The key difference between metals and dielectrics concerns the nature of the charged particles 
through which the EM wave interacts with the medium. Charges within dielectrics (e.g., lattice ions 
or valence electrons) are localized and can be modeled as damped harmonic oscillators that vibrate 
due to the columbic forces imposed by the local EM field. This model, called the Lorentz model, is 
highly successful for predicting the variation of the complex dielectric function with respect to the 
angular frequency of the wave, ω = 2πν = 2πc0/λ

 ε ε= +
- -å0

2

0
2 2

w
w w z w

p,j

j jj
i,

.  (3.38)

In Equation (3.38), ωo,j is the resonant frequency, ωp,j is the plasma frequency, and ζj is the damp-
ing coefficient for the jth oscillator. These parameters are normally found by nonlinear regression 
to experimental data. The dielectric function components can then be transformed into n and k via 
Equation (3.2) if so desired. Figure 3.13 shows the reflectance of MgO predicted using Equation 
(3.38), which can be modeled using two oscillators (Jasperse et  al. 1966). The abrupt variations 
of spectral reflectivity with respect to wavelength are representative of many dielectrics, and this 
behavior can be exploited in many engineering applications, e.g., optics and in designing selective 
surfaces (cf. Section 3.4).

In the case of metals, the EM wave interacts principally (but not exclusively) with conduction 
band electrons. The classical Hagen–Rubens relations captures this behavior only at long wave-
lengths, λ >~ 5 μm, as outlined by Table 3.2, which shows much better agreement between the pre-
dicted and measured ελ,n value at 10 μm compared to 0.589 μm. This is for two main reasons. First, 
EM theory presumes that the surface is optically smooth (i.e. the wavelength is much larger than 
the RMS roughness), which is more likely to be the case at longer wavelengths. Second, Hagen–
Rubens theory assumes that electrical conductivity is independent of wavelength; while this is true 
at long wavelengths, at shorter wavelengths/higher frequencies, electron mobility depends on the 
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oscillatory motion of electrons induced by the EM wave. This effect is captured by Drude theory, 
which models the metal as a “sea” of free conduction band electrons that scatter from a background 
of ions and neutral atoms. The complex dielectric constant is then derived from the damped har-
monic motion of electrons:

 ε = -
+

1
2

2

w
w zw

p

i
.  (3.39)

The Drude parameters in Equation (3.39) are the plasma frequency, ωp, and the damping coefficient, 
ζ, which in principle can be calculated from the number density of electrons, Np, (found from the 
density and valence of the metal) and DC conductivity, σDC = 1/re, according to Equations (8.117) 
and (8.118). Aluminum is particularly well-approximated using Drude theory over the visible and 
near-infrared wavelengths. Figure 3.14 compares the measured spectral reflectance of polished alu-
minum and deposited aluminum film with predictions from Hagen–Rubens theory, Equation (3.29), 
and Drude theory. The Hagen–Rubens prediction is computed using the resistivity for aluminum 
in Table 3.2, while the Drude parameters of ωp = 2.48 × 1015 rad/s and ζ = 5.88 × 1012 rad/s are also 
found from re and electron number density; the electron number density is found using the bulk 
density of aluminum, assuming each atom contributes three conduction band electrons.

Drude theory assumes that the EM field interacts exclusively with conduction band electrons; in 
many metals, however, transitions between bound states (e.g., interband transitions) strongly affect 
the radiative properties. In some cases Drude theory can still be applied to model the radiative 
properties of the metal by treating ωp and τ as parameters to be fitted to reference reflectance 
data, as opposed to being calculated from the density and DC resistivity of the bulk metal. Ordal 
et  al. (1985) followed this procedure for 14 metals in the infrared and far-infrared. In this sce-
nario Equation (3.39) is simply a convenient means of parameterization; therefore, good agree-
ment between modeled and measured radiative properties should not be construed to mean that 
Drude theory is an accurate representation of the true electron dynamics within metals in all cases. 

FIGURE 3.13 Normal spectral reflectivity of MgO at room temperature. Lorentz parameters and experi-
mental data from Jasperse, J. R., Kahan, A., Plendl, J. N.: Temperature dependence of infrared dispersion in 
ionic crystals LiF and MgO, Phys. Rev., 146(2), 526, 1966.
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114  Thermal Radiation Heat Transfer

Alternatively, Lorentz–Drude theory can be used to account for transitions between bound states, 
e.g., the vibration of free electrons.

At still shorter wavelengths (e.g., visible and UV) the role of bound electrons and electron band 
structure must be considered. The theory for radiative properties of materials has been improved 
significantly over the years by explicitly modeling these effects. The contributions of Davisson and 
Weeks (1924), Foote (1915), Schmidt and Eckert (1935), and Parker and Abbot (1964) extended the 
emissivity relations for metals to shorter wavelengths and higher temperatures, and Mott and Zener 
(1934) derived predictions for metal emissivity at very short wavelengths on the basis of quantum-
mechanical relations. Kunitomo (1984) provides accurate predictions of high- and low-temperature 
properties of metals and alloys by including the effect of bound electrons on optical properties. 
Chen and Ge (2000) introduced a damping frequency term into the Drude model of free-electron 
oscillations, giving a more accurate prediction of the complex dielectric constant. This modifies the 
relations between the complex refractive index and the complex dielectric constant.

3.3  MEASUREMENTS ON REAL SURFACES

The results discussed in the previous section apply to pure materials having perfectly smooth and 
uncontaminated interfaces. While there are situations in which these conditions are approximately 
satisfied, e.g., lenses and optical components, the surfaces encountered in engineering practice more 
often deviate from this ideal scenario, and their radiative properties will differ significantly from 
EM predictions.

3.3.1  heterogeneity anD surface coatings

In many practical situations the surface may be heterogeneous, which profoundly affects the radia-
tive properties. As an example, in the visible wavelengths, solid ice behaves as a dielectric having a 

FIGURE 3.14 Normal spectral reflectivity of Ag at room temperature. Drude parameters are calculated 
using density and DC resistivity. Data from Touloukian, Y.S. and Ho, C.Y. (eds.): Thermophysical Properties of 
Matter, TRPC Data Services; Volume 7, Thermal Radiative Properties: Metallic Elements and Alloys, 1970.
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refractive index of approximately 1.3, so it is nearly transparent at normal incidence (e.g., on side-
walks, much to the chagrin of pedestrians) with a normal reflectance of 0.02 according to Equation 
(3.14). On the other hand, freshly fallen snow has a reflectivity of approximately 0.85 due to multiple 
scattering caused by the ice crystals, each of which acts as scattering centers, directing the majority 
of incident irradiation through multiple scattering events back out of the surface. This phenomenon, 
sometimes called the “snow effect” (Hollands 2004), is shown schematically in Figure 3.15. Multiple 
random scattering within the layer dramatically increases the reflectivity and also makes the surface 
more diffuse-like. The radiative properties of snow are pivotal to climate change, through the over-
all global radiation budget (i.e. fraction of solar energy reflected vs absorbed) and local changes in 
climate patterns, which has motivated recent theoretical research and experimental measurements. 
Ball et al. (2015) measured the bidirectional reflectance function of snow-covered tundra.

The snow effect also applies to paper, fabric, chalk, ceramics, and some pigments and coatings. 
Figure 3.16 plots the hemispherical normal spectral reflectivity of three paint coatings on steel. 
White paint often consists of ceramic (e.g., TiO2) nanoparticles in a silicone or polymer binder and 
has a high reflectivity at short wavelengths because of the snow effect. Black paint, however, which 
is often made of absorbing particles like carbon black, has a relatively low reflectivity over the 
entire wavelength region. Using aluminum powder in a silicone binder produces a reflectivity more 
representative of a metallic surface.

Coatings based on TiO2 nanoparticles can be engineered to enhance the solar reflectivity of 
surfaces (Baneshi et al. 2010), thereby reducing cooling requirements of buildings during summer 
months. (Spectrally selective surfaces are discussed in Section 3.4 and in Chapter 19). Fuel stor-
age tanks and aircraft are also often treated using white, TiO2-based paints to prevent them from 
heating up due to solar radiation. On the other hand, the absorptance of surfaces can be enhanced 
by embedding highly absorbing particles in a dielectric matrix, e.g., for solar energy applications 
(Wang et al. 2018). Hadley and Kirchstetter (2012) consider how black carbon particles reduce the 
high reflectance of snow and ice, along with the implications for climate change. Scattering and 
absorption of radiation by particles are discussed in more detail in Chapter 10.

Even in the absence of heterogeneities, applying EM theory to dielectrics is complicated by the 
fact that, for a dielectric to be considered opaque, a specimen must have sufficient thickness to 
absorb essentially all the radiation that enters through boundaries; otherwise, radiation transmitted 
through and reflected from all boundaries must be taken into account. Often, then, it is necessary to 
conceive the dielectric as a coating on a substrate. For a surface to behave completely as the coating 
material, the coating thickness must be large enough so that no significant radiation is transmitted 
through it. Otherwise, some incident radiation can be reflected from the substrate and transmitted 

FIGURE 3.15 Heterogeneities in a dielectric can dramatically increase the reflectivity and make the surface 
more diffuse.
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back through the coating to reappear as measured reflected energy, in which case the surface prop-
erties would depend on both the coating material and thickness and the substrate.

One of the earlier studies on this subject was conducted by Liebert (1965), who examined the 
spectral emissivity of zinc oxide coatings on various substrates. In Figure 3.17, the effect of coating 
thickness is shown on the spectral emissivity of a composite of zinc oxide on a substrate that has 
an approximately constant normal spectral emissivity. The effect of increasing coating thickness 
becomes small in the thickness range of 0.2–0.4 mm, indicating that the emissivity approaches 
that of zinc oxide alone. Figure 3.18 shows the spectral reflectance of a 14.4 μm TiO2 paint film 
on various substrates. It is clear that the substrate may have a considerable impact on the spectral 
reflectivity. For a black substrate, as the wavelength decreases and becomes small relative to the film 
thickness, the reflectivity increases and becomes more like that of the white paint film.

The most common surface impurities on metal surfaces are thin layers deposited either by absorp-
tion, such as water vapor, or by chemical reaction, such as a thin oxide layer. Because dielectrics 
generally have high emissivities, an oxide layer or other nonmetallic contaminant usually increases 
the emissivity of an otherwise ideal metallic surface. Figure 3.19 shows the directional-spectral emis-
sivity of titanium at θ = 25° (Edwards and Catton 1964, Edwards and Bayard de Volo 1965). The data 
points are for unoxidized metal, and the solid line is the ideal emissivity predicted by EM theory. 
The dashed curve is the observed emissivity when the surface is contaminated with a 0.06 µm thick 
oxide layer, which nearly doubles ελ compared to pure titanium over much of the wavelength range. 
Similarly, Figure 3.20 shows how oxidation affects the normal spectral emissivity of Inconel X over 
visible and near-infrared wavelengths (Wood 1964). Finally, Figure 3.21 shows how the normal total 
emissivity of copper and the hemispherical total emissivity of aluminum change with oxide layer 
thickness. The copper oxide layer was produced by heating copper in air, while the aluminum oxide 
layer was produced through anodization. The emissivity of both metals is initially very low (typical 
for a highly conducting metal) but increases as the oxide coating becomes thicker. The surface rough-
ness of the oxide layer may also evolve as it grows, as discussed in Section 3.3.2.

FIGURE 3.16 Spectral reflectance of a TiO2 based pigment. Data from Touloukian, Y.S. and Ho, C.Y. 
(eds.), Thermophysical Properties of Matter, TRPC Data Services; Volume 9 Thermal Radiative Properties: 
Coatings, 1972b.
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FIGURE 3.17 Spectral emissivity of zinc oxide coatings on an oxidized stainless-steel substrate. (From 
Liebert, C. H., Spectral emittance of aluminum oxide and zinc oxide on opaque substrates, NASA TN 
D-3115, 1965).

FIGURE 3.18 Effect of substrate reflectivity characteristics on the hemispherical-spectral reflectivity of a 
TiO2 paint film for normal incidence. Film thickness, 14.4 μm; volume concentration of pigment, 0.017. (From 
Shafey, H.M. et al., AIAA J., 20(12), 1747, 1982).
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In some cases, an oxide film can induce oscillatory patterns in ελ or ρλ due to the phase shift 
caused by the oxide layer, leading to constructive and destructive interferences between the inci-
dent and reflected EM wave. Figure 3.22 shows the spectral emissivity of an iron surface heated in 
air as a function of time (del Campo et al. 2008.) The rate at which the peaks shift is connected to 
the oxide layer growth, which is used to infer the oxidation reaction kinetics. Makino et al. (1988) 
reported similar results for oxide layers on chromium. This effect is also responsible for the attrac-
tive colors of anodized metals, which can be controlled through careful engineering of the oxide 
layer thickness. Thin film interference effects are discussed further in Chapter 17.

FIGURE 3.19 Effect of oxide layer on directional-spectral emissivity of titanium. Emission angle, θ = 25°; 
surface lapped to 0.05 mm RMS; temperature 294 K.

FIGURE 3.20 Effect of oxidation on normal spectral emissivity of Inconel X. (Data from Wood, W. D., 
et al., Thermal Radiative Properties, Plenum Press, New York, 1964).
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3.3.2  surface roughness effects

Surface topography has a profound and varied impact on the radiative properties of metals and 
nonmetals, depending on the bulk refractive index of the surface and the size of the surface features 
relative to wavelength. While surfaces may appear smooth macroscopically, microscopically they 
consist of asperities that may be induced by the manufacturing process, mechanical damage, or 

FIGURE 3.21 Effect of oxide layer thickness on the normal total emissivity of copper and hemispherical 
total emissivity of aluminum. Data for copper: Brannon, R. R., and Goldstein, R. J., ASME J. Heat Trans., 
92(2) 257, 1970. Data for aluminum: Touloukian, Y.S. and Ho, C.Y. (eds.), Thermophysical Properties of 
Matter, TRPC Data Services, Volume 9, Thermal Radiative Properties: Coatings, Touloukian, Y.S., DeWitt, 
D.P., and Hernicz, R.S. (1972b).

FIGURE 3.22 Thin film interference effect due to oxide layer growth. From del Campo, L. Pérez-Sáez, 
R. B., Tello, M. J.: Iron oxidation kinetics study by using infrared spectral emissivity measurements below 
570°C, Corros. Sci. 50, 194, 2008.
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a chemical reaction (e.g., oxidation). In some cases, microscale roughness may be imparted with 
the specific intent of altering the radiative properties of a surface. If the process that caused the 
roughness is random, it is often reasonable to approximate the roughness as a sequence of normally 
distributed peaks, where the asperity heights z follow a normal distribution

 p z
z( ) = -
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exp ,  (3.40)

where σo is the root-mean-square (rms) roughness, (sometimes written Rq)

 so m= -( )z z
2

,  (3.41)

the mean surface height is zm, and <·> represents the average, as shown in Figure 3.23. The rms 
roughness is readily measured using a contact profilometer, consisting of a stylus or needle that is 
dragged across a surface. The rms roughness is then used to derive the “optical roughness,” σo/λ. 
At small values of optical roughness, the surface may appear specular or “mirror-like,” while at 
large values the reflection may be more diffuse in nature. For this reason, many surfaces that appear 
diffuse at visible wavelengths can often be approximated as specular in the infrared. A good dem-
onstration of this phenomenon involves looking at a classroom whiteboard with an infrared camera; 
the board reflects visible light diffusely, while a clearly defined image of the reflected body heat 
from the camera operator is visible in the infrared because the white board is optically smooth at 
these wavelengths.

Generally, when σo/λ is greater than about unity, multiple reflections occur in the cavities 
between roughness elements; this increases the trapping of incident radiation, thereby increasing 
the observed surface absorptivity and consequently the emissivity. Graphite has one of the high-
est emissivities of commonplace materials due in part to its porous structure, and consequently it 
is often used to construct surfaces having radiative properties that mimic those of a blackbody. 

FIGURE 3.23 Definition of RMS roughness. Both surfaces shown here have similar RMS roughness, but 
would have different radiative properties. Moreover, roughness exists at different scales, which interact with 
an EM wave in different ways depending on the wavelength.
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VantaBlackTM enhances this effect via a field of closely packed and vertically aligned carbon nano-
tubes, giving it an even higher emissivity than that of graphite (Theocharous et al. 2006).

Surface roughness may be caused by the manufacturing process, or it may be due to chemical 
reactions like oxidation. Figure 3.24 shows the normal spectral emissivity of three types of alumi-
num surface: commercial aluminum, mechanically polished aluminum and a surface formed by 
ultrahigh vacuum deposition of aluminum onto a quartz surface. The spectral emissivity is largest 
for the roughest sample and is smallest for the smoothest surfaces. The influence of roughness is 
most pronounced at the short wavelengths, where the optical roughness is the largest.

Williams et al. (1963) showed that the hemispherical-spectral emissivity of an aluminum surface 
coated with lead sulfide is a strong function of the crystalline structure of the lead sulfide, which 
may appear as cubes or dendrites. In a more recent study, Yu et al. (2019) attribute variations in 
spectral emissivity of copper surfaces oxidized in air at various temperatures and durations to the 
differing surface morphology of the oxides, as shown in Figure 3.25.

Shi et  al. (2015) measured the spectral emissivity of steel sheets coated with an Al-Si layer, 
which prevents oxidation and decarburization of the steel during furnace heating. The hemispher-
ical-spectral emissivity is plotted in Figure 3.26 at various stages of furnace heating. The radiative 
properties of the as-received aluminum coating are typical of a metallic surface having a roughness 
in the order of 1–2 μm and is similar to the normal spectral emissivity of commercial aluminum 
in Figure 3.24. The coating melts at approximately 575°C, giving the surface a very low emissiv-
ity, characteristic of a smooth, highly conducting metal. At higher temperatures the coating reacts 
with iron from the substrate steel to form an intermetallic layer having radiative properties more 
representative of an insulator. The emissivity continues to increase with heating due to the increas-
ing surface roughness. This effect is highlighted by examining the evolving spectral emissivity of 
samples heated in air and argon. The argon-heated samples are much smoother, and consequently 
have a lower spectral emissivity compared to the ones heated in air, as shown in Figure 3.27.

FIGURE 3.24 Normal spectral emissivity of aluminum surfaces having different surface finishes. Data from 
Touloukian, Y.S. and Ho, C.Y. (eds.), Thermophysical Properties of Matter, TRPC Data Services; Volume 7, 
Thermal Radiative Properties: Metallic Elements and Alloys, 1970.
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FIGURE 3.25 Normal spectral emissivity of copper surfaces heated in air for 1 hr at different soak tempera-
tures. Scanning electron micrographs show the corresponding surface topographies. From Yu, K., Zhang, H., 
Liu, Y., Liu, Y.: Study of normal spectral emissivity of copper during thermal oxidation at different tempera-
tures and heating times, IJHMT, 129, 1066, 2019.

FIGURE 3.26 Spectral emissivity of Al-Si coated 22MnB5 steel. (Data from ArcelorMittal).
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While spectral emissivity generally increases with surface roughness, this is not always the case. 
Cox (1965) showed that for dielectric materials with σoβλ, a ratio of roughness to mean penetration 
distance in the material of about 0.05 (the mean penetration distance is l = 1/βλ), the emissivity may 
be less than a smooth surface. This can be considered as an extension of the “snow effect” described 
in the preceding section.

Surface roughness also affects the directional nature of emission and reflection. Figure 3.28 shows 
the ratio of the reflectivity in the specular direction of a rough nickel surface compared to that of a 
polished specimen, which increases as σo/λ becomes large. Figure 3.29 shows the bidirectional spec-
tral reflectivity of an aluminum surface having an optical roughness of σ0/λ of 2.6 in the incidence 
plane (cf. Figure 3.1.) Detailed bidirectional reflectivity measurements for magnesium oxide ceramic 
with optical roughness σo/λ varying from 0.46 to 11.6 are listed by Torrance and Sparrow (1966). As 
the roughness and incidence angle of the incoming radiation are increased, off-specular peaks are 
obtained. Bidirectional-spectral reflectivity measurements are reported by DeSilva and Jones (1987) 
for six materials used for solar energy absorption. Peaks in the specular direction were found.

Drolen (1992) provides bidirectional reflectivity measurements for 12 materials commonly used 
for spacecraft thermal control, such as white paint, black Kapton, and aluminized Kapton. The 
“specularity” given is the fraction of the directional-hemispherical reflectivity contained within 
the specular solid angle. Specularity values can be used in surface property models that assume 
a combination of diffuse and specular reflectivities (cf. Sections 6.5 and 6.6). Most measurements 
reported by Drolen are at a wavelength of λ = 0.488 μm, but some white paints were measured at 
four discrete wavelengths covering the range 0.488 ≤ λ ≤ 10.63 μm. Zaworski et al. (1996a) pres-
ent detailed bidirectional reflectance data for a variety of surfaces, including Krylon white paint. 

FIGURE 3.27 Influence of atmosphere on surface morphology and spectral emissivity of Al-Si coated 
22MnB5 steel during two-step heating. The samples are initially heated at 610°C for 5 minutes and then 
900°C for varying durations. Solid curves show in-situ normal spectral emissivity measurements, while sym-
bols show ex-situ hemispherical spectral emissivity. Arithmetic roughness (Ra) was measured with a contact 
profilometer. From Shi, C. J., Daun, K. J., and Wells, M. A.: Spectral emissivity characteristics of the Usibor® 
1500P steel during austenitization in argon and air atmospheres, IJHMT, 91, 818, 2015.
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Figure 3.30 shows that the painted surface is quite diffuse until incident angles of 60° or greater 
are reached. Combined, the results suggest that the bidirectional reflectivity can be modeled as the 
superposition of a diffuse reflector and a specular reflector. This approximation has merit in some 
cases and simplifies the radiant exchange calculations compared with using exact directional prop-
erties (Sparrow and Liu 1965, Sarofim and Hottel 1966).

In other cases, however, this approximation would fail. A particularly interesting example con-
cerns the lunar surface, which is highly reflective due to its roughness and porosity. When the 
moon is full in phase, the sun, earth, and moon are nearly coincident and the moon is uniformly 

FIGURE 3.28 Effect of roughness on bidirectional reflectivity in the specular direction for ground nickel 
specimens. Mechanical roughness for polished specimen, 0.0015 μm. (From Birkebak, R. C., and Eckert, E. 
R. G., JHT; 87(1) 1965).

FIGURE 3.29 Bidirectional reflectivity in the incidence plane for various incidence angles; 2024–T4 alumi-
num (coated); σo = 1.3 μm; wavelengths of incident radiation, λ = 0.5 μm. (From Torrance, K. E., and Sparrow, 
E. M., JOSA, 57(9), 1105, 1967).
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irradiated with nearly collimated solar radiation, as shown in Figure 3.31. Were the lunar surface 
diffuse, as one may expect for a rough surface, the reflected light would follow a Lambertian cosine 
distribution, and the moon would appear brightest at its center and darker near its edges. On the 
contrary, however, we see the moon as a white disk of nearly uniform intensity. The reason for this 
observation can be traced back to the bidirectional reflectivity measurements plotted in Figure 3.32 
that show a strong back-scattering component, located 180° away from the direction of specular 
reflectance (Orlova 1956). Consequently, the bidirectional reflectance component increases approxi-
mately proportional to 1/cosθi (shown by the dashed line in Figure 3.32). This compensates for the 
reduced energy incident per unit area at large angles. Further discussions of the radiative properties 
of the lunar surface are given by Saari and Shorthill (1967), Harrison (1969), Birkebak (1974), and 
Sailsbury et al. (1997). Ohtake et al. (2013) describe recent measurements carried out from a lunar 
orbiter.

While optical roughness provides a general indication of the importance of surface topography 
over a particular spectrum and can be used to interpret trends in the data, it is inadequate to make 
quantitative predictions of radiative properties. It does not account for the horizontal spacing of the 
roughness, for example, nor does it indicate the distribution of the roughness size around the rms 
value (which may not be normally distributed), nor information on the average slope of the sides of 
the roughness peaks. Both surfaces shown in Figure 3.23 may have the same rms roughness, but 
the slopes and spacing between the asperities are quite different, which would lead to dissimilar 

FIGURE 3.30 Bidirectional reflectivity of Krylon white paint. Plots are of ln[ρλ(λ,θi,ϕi, θr, ϕr,)] at λ = 0.6328 μm.  
(From Zaworski, J. R., et al., IJHMT, 39(6) 1149, 1996a).
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radiation properties. A further complication is that surface topography exists at multiple scales, 
and often has a self-similar, “fractal like” quality (Majumdar and Tien 1990a, 1990b) that is not 
captured by the rms roughness measured by contact profilometry. The influence of additional geo-
metric scales that characterize surface roughness is also addressed by Yang and Buckius (1995). 
An important example concerns the radiative properties of metals, which are needed to carry out 
multiwavelength pyrometry during thermal processing. The spectral emissivity of these alloys is 
known to evolve due to oxide nodules that appear as the steel is heated within a reducing atmo-
sphere. However, contact profilometry measurements made on samples extracted from a furnace at 

FIGURE 3.31 Reflected energy at full moon. (Not to scale).

FIGURE 3.32 Bidirectional total reflectivity in the incidence plane for mountainous regions of the lunar 
surface. After Orlova, N. S. Astron. Z. 33(1), 93, 1956).
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intermediate heating times did not correlate with the changing emissivity; this is because the rms 
roughness measured using the contact profilometer was dominated by large-scale rolling artifacts 
that did not influence the radiative properties of the specimen (Ham et al. 2018).

Additional parameters and more sophisticated measurement techniques are therefore needed to 
derive quantitative estimates of radiative properties. Some contact profilometers provide the aver-
age surface slope, or additional “skewness” and “kurtosis” parameters to describe the shape of the 
asperities. The local radius of curvature and spacing between asperities are also important. For 
randomly rough surfaces this latter quantity can be quantified by the Gaussian correlation function

 C L z x z z x L z e L( ) = ( ) -( ) +( ) -( ) = -( )1
2

2

s
t

o
m m  (3.42)

where τ is the correlation length, which is the width of a Gaussian correlation function over which 
the roughness correlation decreases by a factor of e.

Optical profilometers use the principle of interferometry to construct a “2D” picture of rough-
ness. Many of these instruments provide a “power spectrum” of the surface topography, showing the 
prominence of different length scales in accordance with the fractal-like nature of surface rough-
ness. Still higher resolution can be obtained through atomic force microscopy (AFM), which have 
horizontal and vertical resolution on the order of ~30 nm and 0.1 nm, respectively. Example optical 
and AFM profilograms are shown in Figure 3.33.

Detailed surface topography information can sometimes be used to derive theoretical or numeri-
cal models for radiative properties of surfaces. Wen and Mudawar (2006) present a taxonomy of 
models used to predict the spectral emissivity of metallic surfaces, shown in Figure 3.34. These 
surfaces can broadly be categorized as perfectly smooth; slightly rough; moderately rough; and 
very rough. A schematic of the bidirectional reflectances that correspond to this case is shown in 
Figure 3.35.

The radiative properties of perfectly smooth surfaces can be modeled directly using the relations 
in Section 3.2.2. For slightly rougher surfaces, small surface asperities act as “scattering centers” for 
the incident wave, and the observed radiative properties are due to the superposition of the scattered 
waves in the far field. Davies (1954) derived an analytical model using the Kirchhoff approximation, 

FIGURE 3.33 Optical profilogram, atomic force micrograph, and scanning electron micrograph of DP980 
steel alloy heated in a reducing atmosphere. (The box outline on the optical profilogram does not coincide 
with the AFM region, but emphasizes scale.) Liu, K., and Daun, K. J.: Interpreting the spectral reflectance of 
advanced high strength steels using the Davies’ model, JQSRT, 242, 106796, 2020.
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in which the Fresnel reflection equations are applied to the tangent plane of the surface roughness 
at each point of incidence; this may be reasonable, provided that the local radius of curvature is less 
than the wavelength, and the correlation length is sufficiently large. The material is further to be a 
perfect electrical conductor so that, from EM theory, the extinction coefficient is infinite. This pro-
vides perfect reflection, and consequently, the theory gives the directional distribution of the energy 
that is reflected distribution about the specular peak as shown in Figure 3.35b, as opposed to the 
reflectivity. According to this theory the reflectance in the specular direction is given by

 r ps
l

ql = -æ
è
ç

ö
ø
÷

é

ë
ê
ê

ù

û
ú
ú

exp cos
4

2
o

i  (3.43)

which diminishes as the surface becomes optically rough and the lobular scattering pattern in 
Figure 3.35b becomes broader. This treatment can be extended to surfaces having finite conductiv-
ity by introducing a coefficient ρλ,s to the right-hand side of Equation (3.43) that equals the reflec-
tance of a perfectly smooth surface made of the same material (e.g., from Fresnel’s relations). Davies 
treatment is inaccurate at near-grazing angles because shadowing by the roughness element s is 
neglected.

Modeling the radiative properties of a moderately rough surface is considerably more complex. 
Porteus (1963) extended Davies approach by removing the restrictions on the relation between σ0 

FIGURE 3.34 Types of models used to predict spectral emissivity of metallic surfaces. Wen, C.-D and 
Mudawar, I.: Modeling the effects of surface roughness on the emissivity of aluminum alloys, IJHMT, 49, 
4279, 2006.

FIGURE 3.35 Transition from specular reflectance to diffuse scattering. Surfaces are: (a) smooth; (b) 
slightly rough; (c) moderately rough; (d) very rough. Beckman, P., and Spizzichino, A.: The Scattering of 
Electromagnetic Waves from Rough Surfaces, Pergamon Press, New York, 1963.
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and λ and including more parameters for specifying the surface roughness characteristics. Some 
success was obtained in predicting the roughness characteristics of prepared samples from mea-
sured reflectivity data. Measurements were mainly at normal incidence, and the neglect of shadow-
ing makes the results doubtful at near-grazing angles.

Beckmann and Spizzichino (1963) also extend the applicability of Davies’ theory by accounting 
for the autocorrelation distance of the roughness, τ. The method provides better data correlation 
than the earlier analyses and captures the more diffuse reflectance that one would expect for large 
values of optical roughness. A critical evaluation of Davies and Beckmann analyses is given by 
Houchens and Hering (1967). Data for aluminum have been well-correlated in Smith and Hering 
(1970) by use of Beckmann’s theory.

The emissivity of a surface with random submicron roughness elements is discussed by Carminati 
et al. (1998) and Ghmari et al. (2004). Through scaling arguments, it is shown that interference 
effects between radiation emitted by closely spaced elements can be neglected, which is not the case 
for reflected energy. Based on this observation, predictions of directional-spectral emissivity from 
surfaces with random submicron roughness elements can be made through numerical simulation. 
Because the model initially neglects shadowing and blocking effects, the predictions are restricted 
to rms height to wavelength ratios of σo/λ < 0.3, as obtained by comparison with experimental emis-
sivity data for the two components of polarization.

Figure 3.36 shows the spectral hemispherical reflectivity of a steel alloy measured with an inte-
grating sphere, along with the near-normal specular reflectance and diffuse reflectance, which 
excludes the specular component from the hemispherical reflectivity. The surface topography is 
dominated by large-scale rolling artifacts (seen in the optical profilogram of Figure 3.32) and oxide 
nodules having diameters of around 100 nm at smaller scales, seen in the atomic force and scanning 
electron micrographs. The profilometer-derived rms roughness is 0.42 μm. At long wavelengths 
(λ > 15 μm) the surface is “slightly rough” and the specular reflectance approaches the hemispheri-
cal reflectance, indicating that the surface behaves in a specular manner and ρλ can be modeled 

FIGURE 3.36 Spectral hemispherical reflectance of DP980 steel alloy annealed in a reducing atmosphere. 
Liu, K., and Daun, K. J.: Interpreting the spectral reflectance of advanced high strength steels using the 
Davies’ model, JQSRT, 242, 106796, 2020.
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using Equation (3.43). At shorter wavelengths the surface becomes moderately rough, as indicated 
by the drop in the specular reflectivity and an increase in the diffuse reflectivity. At still shorter 
wavelengths (λ < 1 μm) a ~100 nm thick passivating oxide film causes an oscillation in ρλ according 
to the wave-interference theory presented in Section 3.3.2. This behavior alters the visible appear-
ance of the steel surface.

For σo/λ ≫ 1, geometric optics may be used to trace the radiation paths reflected within cavi-
ties formed by the roughness elements, and if the roughness geometry is completely specified, 
it is possible in certain cases to predict the directional behavior. Ordinarily, roughness is very 
irregular, and a statistical model must be assumed. For example, roughness can be represented as 
randomly oriented facets that each reflect in a specular manner. A roughness model composed of 
spherical cap indentations was also suggested by Demont et al. (1982). Ody Sacadura (1972) and 
Kanayama (1972) analyzed the angular distribution of the emissivity from a rough surface by con-
sidering emission from V-grooves in a parallel or circular pattern. A more realistic model is the 
randomly roughened metal surface in Abdulkadir and Birkebak (1978) and Wolff and Kurlander 
(1990) where multiple reflections between surface elements were neglected. Calculations for gold 
and chromium indicate that for θi < 60°, the emissivity increases with roughness. For larger θi, the 
directional emissivity is less than for an ideal smooth surface; this is a result of both roughness and 
the behavior of ideal smooth metallic surfaces where the emissivity becomes large for directions 
nearly tangent to the surface. The roughness models are also used with ray tracing methods to sim-
ulate realistic visual reflection from objects (Wolff and Kurlander 1990). Jo et al. (2017) applied 
geometric optics to simulate the emissivity of oxidized steel, using a surface profile derived from 
a Fourier series.

Tang and Buckius (1999) reviewed literature on surface reflection (surface scattering) models 
and experiments. The influence of incidence angle, radiation wavelength, surface materials, and 
surface geometry on scattering from a surface is discussed. Both deterministic and probabilistic 
surface models are presented. It is noted that polarized energy incident on tailored 2D rough sur-
faces can provide extremely strong spikes in reflectivity, particularly when the wavelength of the 
incident radiation is such that resonance occurs within the surface cavities. Comparisons between 
predictions and measurements are in good agreement, adding confidence in the use of EM theory 
for these predictions.

A regime map is given by Dimenna and Buckius (1994a) to show the region of validity of the 
various approaches for predicting surface reflectivity of a highly conducting material with rough-
ness that varies only in one direction. The exact solution of Maxwell equations is compared with 
a geometric optics solution using Fresnel reflection equations applied to the tangent plane of the 
surface roughness at each point of incidence, i.e. Kirchhoff’s approximation.

Another regime map, shown in Figure 3.37, depicts when geometric optics provide a specified 
acceptable level of accuracy for one-dimensional (1D) roughness on a perfectly conducting surface 
(Tang et al. 1977). The axes on the plot are the surface rms roughness σ0 over the roughness correla-
tion length τ, Equation (3.42), versus the ratio of roughness times the cosine of the incidence angle 
divided by the wavelength, σocosθi/λ. The shaded region is delineated by comparing the results of 
EM theory computations with geometric optics results for over 40 surfaces. The boundary is drawn 
where the error is less than 20%; outside of the shaded region, detailed analysis using EM theory 
is required. This map was derived for perfectly conducting surfaces; similar results for dielectric 
surfaces indicate that the region increases where geometric optics provides good agreement. For a 
given roughness, if the wavelength is small relative to the roughness, the geometric optics approxi-
mation applies. This is also true if the correlation length is large so that the roughness has a less 
random irregularity. A more recent regime map is provided by Fu and Hsu (2008). K. H. Lee (2019) 
uses an inverse technique to estimate emissivity distributions, and H. J. Lee (2019) uses geometric-
optics-based Monte Carlo (Chapter 14) to determine the reflectivity distributions of rough silicon 
and aluminum surfaces with known Gaussian slope and height distributions, and then uses regres-
sion to fit relations for the reflectivity.
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3.3.3  variation of raDiative ProPerties with surface teMPerature

3.3.3.1  Non-metals
Theoretical predictions of the effect of temperature on the radiative properties of insulators are var-
ied and complex. Figure 3.38 shows how the normal spectral emissivity of two ionic crystals, LiF 
and MgO, change with temperature. In general, the normal spectral emissivity increases at short 
wavelengths but drops at long wavelengths. Solid lines show fits obtained from Lorentz theory, 
Equation (3.38); Jasperse et al. (1966) explain these trends by interpreting how the resonant fre-
quency, ωo,j, and the damping constant, ζj, may be affected by temperature. The radiative properties 
of amorphous materials tend to be insensitive to temperature, as shown in Figure 3.39 for a SiC 
material and sintered Al2O3. In cases in which the radiative properties of a ceramic are observed to 
change significantly with temperature, these changes may be due to temperature-induced changes 
in the surface structure or the formation of oxidation with heating.

In general the index of refraction for non-conductors is weakly dependent on temperature; con-
sequently, ελ is insensitive to temperature, and variation of total emissivity with temperature is 
dominated by how the spectral shift in Eλb influences the relative weighting of ελ. This provides the 
very useful result that the ελ measured at one temperature can be used in the integral to calculate 
accurate ε values over a range of nearby temperatures. Figures 3.40 and 3.41 show the total normal 
and total emissivity for several ceramic materials. Both increasing and decreasing trends with tem-
perature are observed.

3.3.3.2  Metals
In Section 3.2.2 it was shown that the normal spectral emissivity of metals tends to increase as 
wavelength decreases in the IR region. Figure 3.42 shows the spectral normal emissivity for sev-
eral polished metals at high temperatures, and this generally holds in other directions as shown in 
Figure 3.6, except at large angles from the normal, where various spectral profiles may cross. At 
sufficiently long wavelengths λ > ~5 μm, Hagen–Rubens theory predicts that the normal spectral 
emissivity should be proportional to λ−1/2, which is the case for the data from iron, platinum, nickel, 

FIGURE 3.37 Region of validity (within 20% error) for using geometric optics analysis of reflectivity for 
rough surfaces. (From Tang, K. et al., IJHMT, 40, 49, 1977).
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FIGURE 3.38 Effect of temperature on the normal spectral emissivity of LiF and MgO. Solid curves denote 
Lorentz theory, Equation (3.38). (From Jasperse, J. R., Kahan, A., Plendl, J. N.: Temperature dependence of 
infrared dispersion in ionic crystals LiF and MgO, Phys. Rev., 146(2), 526, 1966).

FIGURE 3.39 Normal spectral emissivity for various temperatures of a silicon carbide material, Hexoloy 
ST (as received) and sintered alumina. (SiC from Postlethwait, M.A. et al., JTHT, 8(3), 412, 1994: Al2O3 from 
Touloukian, Y.S. and Ho, C.Y. (eds.), Thermophysical Properties of Matter, TRPC Data Services; Volume 8, 
Thermal Radiative Properties: Nonmetallic Solids, 1972).
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FIGURE 3.40 Effect of surface temperature on total emissivity of dielectrics. (From Touloukian, Y.S. and 
Ho, C.Y.: Thermophysical properties of matter, in Y.S. Touloukian and D.P. DeWitt (eds.), Volume 9, Thermal 
Radiative Properties: Metallic Elements and Alloys, 1970; and Thermal Radiative Properties: Coatings, 
1972b; Grewal, N.S. and Kestoras, M., IJHMT, 31(1), 207, 1988).

FIGURE 3.41 Effect of surface temperature on normal total emissivity of zirconium oxide. (From Wood, 
W.D. et al.: Thermal Radiative Properties, Plenum Press, New York, 1964.)
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and tungsten samples plotted in Figure 3.42. The curve for the copper sample illustrates an excep-
tion as the emissivity remains relatively constant with wavelength. As described in Section 3.2.3, at 
very short wavelengths, the assumptions underlying Hagen–Rubens theory become invalid. Most 
metals exhibit a peak emissivity somewhere near the visible region, and the emissivity decreases 
rapidly with further increases in wavelength.

Hagen–Rubens theory also predicts that the spectral emissivity of pure metals should increase 
with temperature, as its resistivity does, and this is usually found to be the case. Figure 3.43 is an 
example of the hemispherical-spectral emissivity of tungsten (De Vos 1954). The expected trend is 
observed for λ > 1.27 μm. In particular, since the Hagen–Rubens theory predicts that ελ ∝ re

1/2 and 
the resistivity of many metals varies linearly with temperature, cf. Equation (3.33), it follows that ελ 
should also vary with the square root of temperature (in K). This should also approximately hold 
for hemispherical values, which is shown to be the case in Figure 3.43 at λ = 2 μm, although at this 
wavelength one may not expect an accurate quantitative prediction using Hagen–Rubens theory.

Figure 3.43 also illustrates a characteristic of many metals, as discussed by Sadykov (1965). At 
short wavelengths (in the case of tungsten, λ > 1.27 μm), the temperature effect is reversed and the 
spectral emissivity decreases with increased temperature. The emissivity curves all cross at the 
same point, called the “X point.” Sell et al. (1964) provide a theoretical explanation of the X-point 
based on how the electron density-of-states varies with temperature. Other X points for different 
metals include iron, 1.0 μm; nickel, 1.5 μm; copper, 1.7 μm; and platinum, 0.7 μm. Thermionic 
energy conversion devices use high-temperature alloys of tungsten and rhenium compounded with 
thoria and hafnium carbide. Their normal spectral emittances were measured by Tsao et al. (1992), 
and results were given for temperatures from 1500 to 2500 K. Most of the results are at λ = 0.535 
μm, and the normal spectral emittances were found to decrease linearly with increasing tempera-
ture. This is the expected trend, since the wavelength is smaller than at the X point and hence spec-
tral emissivity should decreases as temperature increases.

FIGURE 3.42 Variation with wavelength of normal spectral emissivity for polished metals. Dashed lines 
show ελ,n∝λ−1/2. (From Seban, R.A.: Thermal Radiation Properties of Materials, pt. III, WADD-TR-60–370, 
University of California, Berkeley, CA, August 1963).
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The increase of spectral emissivity with decreasing wavelength for metals in the IR region (wave-
lengths longer than in the visible region) accounts for the increase in total emissivity with tempera-
ture. With increasing temperature, the peak of the blackbody radiation distribution (Figure 1.10) 
moves toward shorter wavelengths. Consequently, as the surface temperature increases, propor-
tionately more radiation is emitted in the region of higher spectral emissivity, which increases the 
total emissivity. Some examples are plotted in Figure 3.44; in the case of tungsten, experimental 

FIGURE 3.43 Effect of wavelength and surface temperature on hemispherical-spectral emissivity of tung-
sten. (From De Vos, J.C., Physica, 20, 690, 1954).

FIGURE 3.44 Effect of temperature on hemispherical total emissivity of several metals. (From Touloukian, 
Y.S. and Ho, C.Y. (eds.): Thermophysical Properties of Matter, TRPC Data Services; Volume 7, Thermal 
Radiative Properties: Metallic Elements and Alloys, Touloukian, Y.S. and DeWitt, D.P., 1970).
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measurements are compared with Equation (3.37), derived by Parker and Abbott (1964) from 
Hagen–Rubens theory.

The radiative properties of surfaces at extremely low temperatures provide key fundamental 
insights into the electronic structure of materials, and are also important in many practical engi-
neering applications, for example, vacuum cryogenic insulation systems where the dominant heat 
transfer mechanism is through radiative transfer. Were electrical resistivity directly proportional to 
temperature, Hagen–Rubens theory would indicate that emissivities should become quite small at 
low T and large λ. Likewise, Drude theory, which reduces to Hagen–Rubens relation at long wave-
lengths, predicts ε values that decrease much more rapidly with temperature than has been observed. 
Experimental measurements summarized by Toscano and Cravalho (1976) for copper, silver, and 
gold indicate that ε does not decrease to such small values. The anomalous skin-effect model with 
diffuse electron reflections was found to predict the emissivity most accurately. Figure 3.45 shows 
results of the model. Similar results for gold films are reported by Tien and Cunnington (1973). 
Frolec et al. (2019) provide a database of measured total hemispherical absorptivity and emissiv-
ity data in the cryogenic range from 20 K to between 120 and 320 K for 58 polished metals, metal 
foils, and metals with various surface finishes. They show agreement with previous measurements, 
and also show the expected increases in emissivity when polished surfaces are abraded to various 
degrees.

It is fitting to conclude this section with two final remarks: First, while EM theory may predict 
how the emissivity of a metal surface varies with changes in wavelength and temperature, quantita-
tive agreement between these values and experimental measurements should only be expected for 
polished specimens, and otherwise should be considered as a lower bound due to surface roughness. 

FIGURE 3.45 Effect of low temperatures on hemispherical total emissivity of copper. (Results from 
Toscano, W.M. and Cravalho, E.G., JHT, 98(3), 438, 1976).
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Second, a temperature-induced change in surface morphology of a metal, e.g., oxidation, often has 
a far greater influence on the radiative properties than one would expect via Hagen–Rubens theory, 
again keeping in mind that this theory is limited to longer wavelengths.

3.3.4  ProPerties of liquiD Metals

Liquid metals tend to be more reflective compared to their solid counterparts, since their surface is 
perfectly smooth. Among numerous studies that have investigated the radiative properties of liquid 
metals, of particular note is a series of papers by Krishnan et al., who employed a containerless 
technique through magnetic levitation to avoid chemical reactions between the sample and gas or 
crucible that can occur at extreme temperatures. These studies include Krishnan et al. (1990a) (cop-
per, silver, gold, nickel, palladium, platinum, and zirconium), Krishnan et al. (1990b), (liquid sili-
con, aluminum, titanium, and niobium), Krishnan and Nordine (1993) (aluminum), and Krishnan 
et al. (1997) (nickel and iron). A subset of these results is plotted in Figure 3.46, showing that ελn is 
nearly independent of temperature. Moscowitz et al. (1972) reported the spectral emissivity values 
at λ = 0.645 μm of three rare earth liquid metals, which were similarly independent of temperature. 
This can be attributed to the fact that in solid metals the electrical resistance increases with tem-
perature largely due to temperature-induced lattice vibrations, which scatter the electrons, while 
liquid metals have no atomic lattice.

Figure 3.47 shows how the normal spectral reflectance of several liquid metals varies with respect 
to wavelength. Drude theory, discussed in Section 3.2.3, is often successful for liquid metals since 
the electronic band structure caused by the periodicity of the crystal lattice disappears upon melt-
ing, and in many cases the radiative properties at infrared wavelengths can be interpreted solely in 
terms of intraband electronic transitions involving conduction band electrons (Faber 1972). Several 
studies show very good agreement between the dielectric constants calculated from ellipsometry 
measurements on molten metal and those predicted from Drude theory using the published density 
and DC conductivity, e.g., Miller (1969) and Comins (1972). (See Figure 8.10).

In other cases where interband transitions are important, e.g., liquid iron and nickel (Krishnan 
et al. 1997), Drude theory cannot be applied. Havstad et al. (1993) reported the normal spectral 
emissivity of molten uranium, another transition metal, between 0.4–10 μm and at temperatures 

FIGURE 3.46 Normal spectral emissivity of molten copper as a function of temperature at four different 
wavelengths. From Krishnan, S., Hansen, G. P., Hauge, R. H., Margrave, J. L.: Emissivities and optical con-
stants of electromagnetically levitated liquid metals as functions of temperature and wavelength, In Materials 
Chemistry at High Temperatures: Volume 1 Characterization, J. W. Hastie (ed), Springer, 1990.
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between 1410–1630 K. Both direct emittance and ellipsometry measurements were carried out. At 
longer wavelengths ελn is found to diminish with respect to wavelength, as shown in Figure 3.47. 
This is consistent with the general trend expected from Hagen–Rubens theory, although the refrac-
tive index inferred from ellipsometry could not be reproduced using Equation (3.26) due to inter-
band transitions that are unaccounted for in this model.

Havstad and Qiu (1996) used the electrical resistivity and Hall coefficients for liquid metals 
to predict the spectral normal emissivity of liquid cerium/copper alloys. Agreement with pub-
lished data is good, and extension to copper-, gold-, silver-, and aluminum-rare Earth alloys is also 
expected to be good from similarities in property behavior for these alloys (important in laser-
cladding technologies).

3.3.5  ProPerties of seMiconDuctors anD suPerconDuctors

Semiconductors are a particularly important case since the spectral emissivity must be known in 
order to measure the temperature of silicon wafers during rapid thermal processing. When the 
photon energy is greater than the band gap energy of silicon (~1.14 eV, or ~1.09 μm) the radiative 
properties are dominated by electron transitions between the valence and conduction bands. At 
longer wavelengths, however, the EM field interacts primarily with free carriers in the valence band 
(holes) and the conduction band (electrons).

Semiconductors are often “doped” with impurities to tune their electronic properties, and, as 
one may expect, this has a pronounced effect on the radiative properties as shown in Figure 3.48 for 
silicon. Radiative properties depend both on the carrier density (holes and electrons) as well as the 
scattering, which is dominated by the presence of impurities. Several researchers have attempted 
to model how doping may influence the radiative property through a modified Drude theory that 
accounts for both holes and electrons (e.g., Basu et al. 2010.) Liebert and Thomas (1967) demon-
strated that the radiative properties of doped silicon could be modeled as that of a metal with high 
resistivity using the Hagen–Rubens relations.

While silicon and germanium are semiconductors in solid state, in liquid form they are metals 
because the valence band electrons that are localized by covalent bonds are released and form a 
conduction band upon melting. Consequently, liquid silicon and germanium have a high normal 
reflectance in the visible wavelengths, in contrast to the solid state (Lampert et al. 1981), as shown 

FIGURE 3.47 Normal spectral emissivity of liquid uranium between 1410 K and 1630 K. (From Havstad, 
M.A. et al., JHT, 115, 1013, 1993).
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in Figure 3.49. A number of Drude models for liquid Si and Ge have been derived either by fitting 
ωp, and ζ from Equation (3.39) to ellipsometry measurements or from the density and DC resistivity 
of the molten semiconductor, as described in Chapter 8 (Shvarev et al. 1977, Li and Fauchet 1987, 
Jellison and Lowndes 1987, Kawamura et al. 2005).

3.4  SELECTIVE SURFACES FOR SOLAR APPLICATIONS

It is often desirable to tailor the radiative properties of surfaces to increase or decrease their natu-
ral ability to absorb, emit, or reflect radiant energy. This is particularly the case in solar-related 
applications: In some instances the goal is to maximize the fraction of solar energy absorbed at 
short wavelengths and minimize emission losses at longer wavelengths, e.g., solar collectors, while 
in other cases the fraction of reflected sunlight should be maximized to reduce the cooling load 
of buildings in the summer. (This is often called “radiative cooling.”) While so-called spectrally 
selective surfaces have long been used for these purposes, recent advancements in nanotechnology 
allow engineers to precisely “tune” surface properties according to the requirements of the specific 
application, leading to significant performance improvements. To understand the performance of 
these types of surfaces, we first review the key characteristics of solar radiation.

3.4.1  characteristics of solar raDiation

The key attributes that describe solar irradiation are the solar constant and the solar temperature. 
The solar constant describes the average total solar irradiation incident on a surface normal to the 
sun at a distance equal to the Earth’s mean radius from the sun; it accounts for the solid angle sub-
tended by the sun as viewed by the earth, but excludes attenuation of solar energy by the atmosphere. 
The accepted value by many standards organizations including the American Society for Standards 
and Measurement (ASTM) is 1366 W/m2, although the National Oceanographic and Atmospheric 

FIGURE 3.48 Spectral normal reflectance of pure and doped silicon. (Adapted from Touloukian, Y.S. and 
Ho, C.Y. (eds.), Thermophysical Properties of Matter, TRPC Data Services; Volume 8, Thermal Radiative 
Properties: Nonmetals).
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Administration (NOAA) uses a value of 1376 W/m2. The value fluctuates slightly with time due to 
changes in the solar energy output. Larger changes are due to the eccentricity of the earth’s orbit 
about the sun, causing variations from 1322 W/m2 at aphelion to 1412 W/m2 at perihelion. In this 
book we use a value of 1366 W/m2 unless specified otherwise.

The solar temperature defines the spectral distribution of solar irradiation, which is close to that 
of a blackbody at a temperature of 5780 K. The radiation reaching the earth’s surface comes from 
the plasma contained in the sun’s photosphere and originates from bremsstrahlung radiation (“brak-
ing radiation”) emitted as excited electrons in the plasma decelerate around the ions and neutrals. 
The photosphere has a much lower temperature than the sun’s interior (millions of degrees) where a 
thermonuclear reaction is occurring.

3.4.2  MoDification of surface sPectral characteristics

For surfaces that collect solar energy, such as in solar distillation units, solar furnaces, or solar col-
lectors for energy conversion, it is desirable to maximize the energy absorbed while minimizing 
emission losses. In solar thermionic or thermoelectric devices, the best performance is obtained by 
maintaining the solar-irradiated surface at its highest possible equilibrium temperature. For photo-
voltaic (PV) solar cells, absorption should be maximized within the bandgap of the PV material to 
maximize electrical output, but absorption should be minimized in the IR spectrum to minimize 
heating of the cells and minimize cooling requirements (Hajimirza et al. 2011, 2012, Hajimirza and 
Howell 2012, 2013a, b, 2014a, b.). For situations where a surface is to be kept cool while exposed to 
the sun, it is desired to have maximum reflection of solar energy with maximum radiative emission 
from the surface.

For solar energy collection, a black surface maximizes the absorption of incident solar energy; 
unfortunately, it also maximizes the emissive losses. However, if a surface could be manufactured 

FIGURE 3.49 Spectral normal reflectance of polished solid and liquid silicon. Solid silicon data is from 
Green and Keevers (1995). Liquid silicon measurements are from Shvarev et  al. (1975) and Jellison and 
Lowndes (1987); Drude model is from Kawamura et al. (2005).
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that had a large absorptivity in the spectral region of short wavelengths about the peak solar energy, 
yet small in the spectral region of longer wavelengths where the peak surface emission would occur, 
it might be possible to absorb nearly as well as a blackbody while emitting very little energy. Such 
surfaces are called “spectrally selective.” One method of manufacture is to coat a thin, nonmetallic 
layer onto a polished metallic substrate. As discussed in Section 3.3.1, the thin coating is essentially 
transparent at long wavelengths, and the surface is highly reflective due to the substrate metal. At 
short wavelengths, however, the radiation characteristics approach those of the nonmetallic coating, 
so the spectral emissivity and absorptivity are relatively large. Some examples of this behavior are 
in Figure 3.50 (Shaffer 1958, Hibbard 1961, Long 1965).

An ideal solar-selective surface maximizes the amount of absorbed solar irradiation while mini-
mizing losses due to emission. A good surface should therefore have a spectral absorptivity near 
unity over short wavelengths where the incident solar energy has a large intensity and a low spectral 
emissivity close to zero at longer wavelengths. The wavelength at which this transition occurs, as 
shown in Figure 3.50, is the cutoff wavelength.

Example 3.5

An ideal selective surface is exposed to a normal radiation flux equal to the average solar constant 
Gsolar = 1366 W/m2. The only means of heat transfer to or from the exposed surface is by radiation. 
Determine the maximum equilibrium temperature Teq corresponding to a cutoff wavelength of 
λc = 1 μm. The solar energy can be assumed to have a spectral distribution proportional to that of 
a blackbody at 5780 K.

Because the only means of heat transfer is by radiation, the radiant energy absorbed must equal 
that emitted from the exposed side. For an ideal selective absorber, the hemispherical emissivity 
and absorptivity are
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FIGURE 3.50 Characteristics of some spectrally selective surfaces.
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The energy absorbed by the surface per unit time is

 Q F T G A F T G Aa R solar R solarc c= =® ®al l l0 01( ) ( ) ( )  

where F T0®lc R( )  is the fraction of blackbody energy in the range of the wavelengths between zero 
and the cutoff value, for a radiating temperature TR. In the case, TR is the effective solar radiating 
temperature 5780 K. Similarly, the energy emitted by the selective surface is
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Equating Qe and Qa gives
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For the chosen value for λc, all terms on the right are known, and we can solve for Teq by trial and 
error. The equilibrium temperature for λc = 1 μm is 1337 K. Here are the values of Teq for various λc:

For a blackbody surface (λc → ∞), the equilibrium temperature is 394 K; this is the equilibrium 
temperature of the surface of a black object in space at the earth’s orbit when exposed to nor-
mally incident solar radiation and with all other surfaces of the object perfectly insulated. The 
same equilibrium temperature is reached by a gray body, since a gray emissivity cancels out of 
the energy-balance equation. As λc is decreased, the Teq continues to increase even though less 
energy is absorbed; this is because it also becomes relatively more difficult to emit energy.

A performance parameter for a solar-selective surface is the ratio of its directional total absorp-
tivity α(θi, ϕi, T) for incident solar energy to its hemispherical total emissivity ε(T). The ratio α(θi, 
ϕi, T)/ε(T) for the condition of incident solar energy is a measure of the theoretical maximum tem-
perature that an otherwise insulated surface can attain when exposed to solar radiation. In general, 
the energy absorbed per unit time by a surface element dA
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a q f
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, ,

( ) = ( ) ( )

=

W
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 (3.44)

where Isolar is the incident (total) solar intensity, dΩsolar is the solid angle subtended by the sun as 
viewed by dA, and Gsolar is the corresponding directional energy flux. The total energy emitted per 
unit time by the surface element is

 dQ T T dAe = e s( ) .4  (3.45)

shahab
Rectangle

shahab
Rectangle

shahab
Rectangle



143Radiative Properties of Opaque Materials 

If there are no other modes of energy transfer (e.g., conduction or convection losses), the emitted and 
absorbed energies are equated to give
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 (3.46)

where Teq is the equilibrium temperature that is achieved. Thus, the ratio α(θi,ϕi,T)/ε(T) for T ≈ Teq 
is a measure of the equilibrium temperature of the element. Note that the temperature at which the 
properties α and ε are selected should be the equilibrium temperature that the body attains.

For the collection and utilization of solar energy on Earth or in outer space applications, it is com-
mon to have normal solar incidence so that α = αn and cosθi = 1. Naturally, a high αn/ε is desired. For the 
relatively low temperatures of solar collection in ground-based systems without solar concentrators, 
selective paints on an aluminum substrate have αn = 0.92 and ε = 0.10 (Moore 1985). Low-emittance 
metallic flakes also mixed in a binder with high-absorptance metallic oxides to yield coatings with 
αn = 0.88 and ε = 0.40. For ground-based solar collectors, convection heat transfer must be included in 
the energy balances, and solar collectors are often designed to minimize these losses. To attain high 
equilibrium temperatures for space power systems, polished metals attain αn/ε of 5–7, and specially 
manufactured surfaces have αn/ε approaching 20. Coatings with αn/ε ≈ 13 and stability at tempera-
tures up to about 900 K in air are reported by Craighead et al. (1979). Space power systems usually 
have a concentrator such as a parabolic mirror. This increases the collection area relative to the area 
for emission and thus effectively increases the absorption-to-emission ratio even further. Economical 
and durable paints are desired for application to large solar collection areas. Many of these ideas are 
discussed in reviews by Granqvist (2003) and Wijewardane and Goswami (2012).

Example 3.6

The properties of a real SiO–Al selective surface are approximated by the long dashed curve 
in Figure 3.46 (it is assumed that this curve can be extrapolated toward λ = 0 and λ = ∞). What 
is the equilibrium temperature of the surface for normally incident solar radiation at Earth orbit 
when energy transfer is only by radiation? What is αn/ε for the surface? Describe the spectra of 
the absorbed and emitted energy at the surface. Assume normal and hemispherical emissivities 
are equal.

As in the derivation of Equation (3.46), equate the absorbed and emitted energies. The emissiv-
ity has nonzero constant values on both sides of the cutoff wavelength, so that
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where TR is the temperature of the radiating source. Equating Qe and Qa gives
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Solving by trial and error, for λc = 15 μm, we obtain Teq = 790 K. The small difference in the prop-
erties of an ideal selective surface produces a significant change in Teq, which in the previous 
example was 1048 K for an ideal selective surface with the same λc. The spectral curve of inci-
dent solar energy is given by Eλ,i(TR) ∝ Eb,λ(TR). It has the shape of the blackbody curve at the solar 
temperature, TR = 5780 K, but it is reduced in magnitude so that the integral of Eλ over all λ is 
equal to Gsolar, the total incident solar energy per unit area at Earth orbit. Multiplying this curve by 
the spectral absorptivity of the selective surface gives the spectrum of the absorbed energy. The 
spectrum of emitted energy is that of a blackbody at 790 K multiplied by the spectral emissivity of 
the selective surface. The integrated energies under the spectral curves of absorbed and emitted 
energy are equal.

The energy equation solved in Example 3.6 is a two-spectral-band approximation to the follow-
ing more general energy-balance equation for a diffuse surface:
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The Gλ,solardλ can have any spectral distribution, and by Kirchhoff’s law αλ(Teq) = ελ(Teq) for a diffuse 
surface. A more general situation is in Figure 3.51, where the absorption of incident energy from 
the θi direction depends on the directional-spectral absorptivity αλ(θi,ϕi,Teq). The emission from the 
surface depends on its hemispherical-spectral emissivity ελ(Teq). The qe is the heat flux supplied to 
the surface by any other means, such as convection, electrical heating, or radiation to its lower side. 
The heat balance then becomes
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Equation (3.47) is readily solved by using integration subroutines and root solvers. This analysis can 
be used for temperature control of space vehicles, as shown by Furukawa (1992), who determined 
the solar and Earth radiation fluxes incident on the different surfaces of an orbiting vehicle.

FIGURE 3.51 Radiative energy incident on a selective surface.
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Example 3.7

A spectrally selective surface is to be used as a solar energy absorber. The surface that has the 
same properties as given in Example 3.6 is to be maintained at T = 394 K by extracting energy for 
a power-generating cycle. If the absorber is in orbit around the sun at the same radius as the Earth 
and is normal to the solar direction, how much energy will a square meter of the surface provide? 
How does this energy compare with that provided by a black surface at the same temperature? 
Emitted energy and reflected solar energy by Earth are neglected.

The energy extracted from the surface is the difference between the absorbed and emitted 
radiation. The absorbed energy flux is calculated as in Example 3.6, where TR = 5780 K,

 
q T G T d F T F Ta solar R R Rc c= ( ) ( ) = ( ) + ( )é

=

® ®ò
l

l l l le l
0

0 00 95 0 05 1
¥

-, . . ëë ùû{ }

= ( ) + ( )éë ùû =

Gsolar

W/m0 95 0 880 0 05 1 0 880 1366 1142 1 2. . . . . .-

 

The emitted flux is
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Therefore, the energy that can be used for power generation is 1142.1 − 70.7 = 1071.4 W/m2. For 
a blackbody or gray body, the equilibrium temperature is 394 K as obtained from Example 3.6 so, 
for a black or gray absorber, no useful energy can be removed for the stated conditions.

Spectrally selective surfaces can also be useful where it is desirable to cool an object exposed 
to incident radiation from a high-temperature source. Common situations are objects exposed to 
the sun, such as a hydrocarbon storage tank, a cryogenic fuel tank in space, or the roof of a build-
ing. Equation (3.46) shows that the smaller the value of α/ε that can be reached, the lower will be 
the equilibrium temperature. For a cryogenic storage tank exposed to solar flux in the vacuum 
of outer space, αn/ε should be as small as possible in order to reduce losses by heating the stored 
cryogen. In practice, values of α(θi)/ε in the range 0.20–0.25 can be obtained for normal incidence 
(cosθi = 1). A highly reflecting coating such as a polished metal can also be used for some applica-
tions. This would reflect much of the incident energy but would be poor for radiating away energy 
that was absorbed or generated within an enclosure, such as by electronic equipment. This behavior 
is important for the energy balance in the vacuum of outer space and may not provide a low α/ε, but 
this may not be important when there is appreciable convective cooling that dominates over radiant 
emission. Some metals may not work well because they have a tendency toward lower reflectivity at 
the shorter-wavelengths characteristic of the incident solar energy, e.g., aluminum. For some appli-
cations, spectrally selective materials are used. As discussed in Section 3.3.1, white paint is another 
example of spectrally selective surface.

For thermal control in outer space, different spectrally selective surfaces have been defined. 
Among them, the optical solar reflector (OSR) is a mirror composed of a glass layer silvered on the 
back side. The glass, being transparent in the short-wavelength region, λ < ~2.5 μm, which includes 
the visible range, lets the silver reflect incident radiation in this spectral region. The small fraction of 
short-wavelength energy that is absorbed by the silver and the energy absorbed by the glass at longer 
wavelengths are radiated away by the glass in the longer-wavelength IR region where glass emits 
well. Commonly used thin plastic sheets for solar reflection are Kapton, Mylar, and Teflon with 
silver or aluminum coated on the back side. The long-term radiative performance of these materials 
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after ten years’ exposure in geosynchronous orbit is evaluated by Hall and Fote (1992). Fused-silica 
second-surface mirrors and polished metals are essentially stable in orbit. Metalized Teflon, alumi-
nized Kapton, and some light-colored paints, on the other hand, darken over a long period of time, 
degrading their performance (Hall and Fote).

Radiative dissipation is vital in outer space applications, as there is no other means to eliminate 
waste energy except to dissipate small quantities by using expendable coolants. For a device on the 
ground or in the earth’s atmosphere, convection and conduction to the surrounding environment 
are available. The significance of each of the three heat transfer modes depends on the particular 
conditions in the energy balance. An interesting example of such an energy balance is discussed 
by Berdahl et al. (1983) to show that radiative cooling might be useful for cooling buildings to help 
with air conditioning. Objects exposed to the night sky can cool by radiation to achieve tempera-
tures below the ambient air temperature. This cooling effect can also be utilized during the day if 
the solar reflectivity of a surface is high (greater than about 0.95) and its emissivity is large in the IR. 
For this purpose, titanium dioxide white paint is somewhat superior, as an external solar-selective 
coating, to polyvinyl fluoride film with an aluminized coating 12 μm thick on the underside. These 
are the same types of materials, as well as many others that are used for spacecraft thermal control. 
The properties of these types of material are listed by Henninger (1984). The use of surface nano-
structures to tailor spectral properties is discussed in Chapter 16.

There is also interest in developing selective emitters that emit most of their energy in a narrow 
spectral region rather than over a broad spectrum as for a blackbody emission. In a thermophoto-
voltaic converter, the absorbed radiant energy is converted into electrical energy. The conversion is 
possible only for energy within a small wavelength range. Hence, it is desired to irradiate the con-
verter from a high-temperature surface that radiates primarily in the spectral region that provides 
effective electrical conversion. This provides good efficiency in the use of the radiated energy and 
hence efficient utilization of the energy used to heat the radiating surface such as a nuclear power 
source for applications in outer space. The fabrication of selective emitters by using rare Earth oxides 
is discussed by Rose et al. (1996). Another approach is discussed by Sentenac and Greffet (1994), 
where the theory is provided for designing a regular microroughness (a “grating”) that will provide 
selective emission. The roughness dimension is of the same size range as the radiation wavelengths. 
An examination of performance, using EM scattering theory, indicates that wavelength-selective 
behavior can be obtained, which has been experimentally verified (Greffet and Henkel 2007). A 
near-blackbody absorber is reported by Zhao et al. (2019) through using a stacked microstructure 
comprised of a curved periodic stack of tungsten (15 nm) and polymethylpentene (TPX).

An extended discussion of spectrally selective surfaces for radiative cooling, along with recent 
references, is in the online Appendix J at www.ThermalRadiation.net. Optimization of nanogeom-
etries for desired spectral-directional properties is discussed in Chapter 18.

3.4.3  MoDification of surface Directional characteristics

As discussed previously, surface roughness can have profound effects on radiative properties and 
can become a controlling factor when roughness is large compared with the radiation wavelength. 
This leads to the concept of controlling surface texture to tailor the directional characteristics of 
a surface. A surface used as an emitter might be designed to emit strongly in preferred directions, 
while reducing emission into unwanted directions. Commercial radiant area-heating equipment 
would operate more efficiently by using such surfaces to direct energy where it is most needed. 
If the directional surface is primarily an absorber, then, using a solar absorber as an example, it 
should be strongly absorbing in the direction of incident solar radiation but poorly absorbing in 
other directions. The surface would, because of Kirchhoff’s law for directional properties, emit 
strongly toward the sun but weakly in other directions. Such a surface then would absorb the same 
energy as a nondirectional absorber but would emit less than a surface that emits well into all 
directions.
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147Radiative Properties of Opaque Materials 

The characteristics of one such surface are shown in Figure 3.52. The surface contains long par-
allel grooves with an open angle of 18.2° (Perlmutter and Howell 1963, Brandenberg and Clausen 
1965). Each groove is coated with a highly reflecting specular material on the side walls, and a black 
surface is at the base. The solid line gives the behavior predicted by analysis of such an ideal surface, 
while the data points show experimental results at λ = 8 μm for an actual surface. The directional 
emissivity is very high for θ less than about 30° and decreases rapidly as the angle becomes large. 
Other such surface configurations exhibit similar characteristics; results for various V-, rectangu-
lar, and other grooves are also reported by Demont et al. (1982) and Mulford et al. (2018a, 2018b). 
EM wave theory was used by Ford et al. (1995) and Cohn et al. (1997) to predict the bidirectional-
spectral reflectivity from surfaces with regular microcontours. The microcontour scales for the 
sinusoidal, rectangular, and V-grooves considered are on the order of the wavelength of the incident 
radiation so that geometric optics are not expected to apply. The theory and measurements are found 
to be in quite good agreement. The reflectivity of a V-groove is shown in Figure 3.53.

Surfaces with tailored roughness at the submicron scale can produce directional emissivity with 
extreme directionality (see, e.g., Figures 16.8 and 16.9) (Greffet et  al. 2002, Greffet and Henkel 
2007), and the theory behind these near-field effects is provided in Chapter 16.

3.5  CONCLUDING REMARKS

The radiative property examples in this chapter have illustrated features that may be encountered 
when dealing with real surfaces. Based on these data, we can make some useful generalizations, 
such as that the total emissivities of dielectrics at moderate temperatures are larger than those for 
metals and the spectral emissivity of metals increases with temperature over a broad range of wave-
lengths. However, these generalizations can be misleading because of the large property variations 
that may occur as a result of surface roughness, contamination, oxide coating, grain structure, and 
so forth. It is usually not possible to predict accurate radiative property values except for surfaces 
that approach ideal conditions of composition and finish. By coupling analytical trends with obser-
vations of experimental trends, it is possible to gain insight into what classes of surfaces would 
be expected to be suitable for specific applications and how surfaces may be fabricated to obtain 

FIGURE 3.52 Directional emissivity of grooved surface with highly reflecting specular side walls and 
highly absorbing base; d/D = 0.649. Results in plane perpendicular to groove direction; data at λ = 8 μm.
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certain types of radiative behavior. The latter includes spectrally selective surfaces that are of great 
value in practical applications such as the collection of solar energy and spacecraft temperature 
control.

Finally, because of the growing interest in solar energy and the development of novel nanopat-
terning techniques, new designer materials for various applications are likely to surface. Similarly, 
traditional building materials, such as roof tiles, paints, facades, and windows, can be spectrally 
optimized to decrease the energy load on the buildings. The spectral emissivity could be designed 
to provide surfaces that strongly emit during the nighttime to optimize cooling of structures in hot 
climates (Rephaeli et al. 2013). The developments in spectral radiative transfer analyses may help 
to develop a wider database for spectral and directional radiative properties of different materials.

HOMEWORK PROBLEMS

 3.1 An electrical insulator has a refractive index of n = 1.332 and has a smooth surface radi-
ating into air. What is the directional emissivity for the direction normal to the surface? 
What is it for the direction 60° away from the normal?

  Answers: 0.9793; 0.9397.

 3.2 A particular dielectric material has a refractive index of n = 1.346. For a smooth radiating 
surface, estimate:

 (a) the hemispherical emissivity of the material for emission into air.
 (b) the directional emissivity at θ = 60° into air.
 (c) the directional-hemispherical reflectivity in air for both components of polarized 

reflectivity. Plot both components for n = 1.346 on a graph similar to Figure 3.5. Let θ 
be the angle of incidence.

  Answers: (a) 0.9315; (b) 0.9379.

 3.3 An inventor wants to use a light source and some Polaroid glasses to determine when the 
wax finish is worn from her favorite bowling alley. She reasons that the wax will reflect as 

FIGURE 3.53 Bidirectional-spectral reflectivity in plane of incidence for a nickel V-groove cavity; width of 
cavity opening = 16.7 μm, cavity depth = 1.38 μm, angle of incidence θi = 30°. (From Cohn, D.W. et al., IJHMT, 
40(13), 3223, 1997).
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