
Mathematics of Deep Learning

René Vidal Joan Bruna Raja Giryes Stefano Soatto

Abstract— Recently there has been a dramatic increase in the
performance of recognition systems due to the introduction of
deep architectures for representation learning and classification.
However, the mathematical reasons for this success remain
elusive. This tutorial will review recent work that aims to
provide a mathematical justification for several properties of
deep networks, such as global optimality, geometric stability,
and invariance of the learned representations.

I. INTRODUCTION

Deep networks [1] are parametric models that perform se-
quential operations on their input data. Each such operation,
colloquially called a “layer”, consists of a linear transfor-
mation, say, a convolution of its input, followed by a point-
wise nonlinear “activation function”, e.g., a sigmoid. Deep
networks have recently led to dramatic improvements in
classification performance in various applications in speech
and natural language processing, and computer vision. The
crucial property of deep networks that is believed to be the
root of their performance is that they have a large number of
layers as compared to classical neural networks; but there are
other architectural modifications such as rectified linear acti-
vations (ReLUs) [2] and residual “shortcut” connections [3].
Other major factors in their success is the availability of
massive datasets, say, millions of images in datasets like
ImageNet [4], and efficient GPU computing hardware for
solving the resultant high-dimensional optimization problem
which may have up to 100 million parameters.

The empirical success of deep learning, especially con-
volutional neural networks (CNNs) for image-based tasks,
presents numerous puzzles to theoreticians. In particular,
there are three key factors in deep learning, namely the
architectures, regularization techniques and optimization al-
gorithms, which are critical to train well-performing deep
networks and understanding their necessity and interplay is
essential if we are to unravel the secrets of their success.

A. Approximation, depth, width and invariance properties

An important property in the design of a neural network
architecture is its ability to approximate arbitrary functions
of the input. But how does this ability depend on parameters
of the architecture, such as its depth and width? Earlier work
shows that neural networks with a single hidden layer and

R. Vidal is with the Center for Imaging Science, Biomedical Engineering,
Johns Hopkins University, Baltimore, USA rvidal@cis.jhu.edu

J. Bruna is with the Courant Institute of Mathematical Sciences, Center
for Data Science, New York University, USA bruna@cims.nyu.edu

R. Giryes is with the School of Electrical Engineering, Tel-Aviv Univer-
sity, Tel Aviv, Israel raja@tauex.tau.ac.il

S. Soatto is with the Department of Computer Science, University of
California, Los Angeles, USA soatto@ucla.edu

sigmoidal activations are universal function approximators
[5], [6], [7], [8]. However, the capacity of a wide and shallow
network can be replicated by a deep network with significant
improvements in performance. One possible explanation is
that deeper architectures are able to better capture invariant
properties of the data compared to their shallow counterparts.
In computer vision, for example, the category of an object
is invariant to changes in viewpoint, illumination, etc. While
a mathematical analysis of why deep networks are able to
capture such invariances remains elusive, recent progress
has shed some light on this issue for certain sub-classes
of deep networks. In particular, scattering networks [9] are
a class of deep networks whose convolutional filter banks
are given by complex, multi-resolution wavelet families.
As a result of this extra structure, they are provably stable
and locally invariant signal representations, and reveal the
fundamental role of geometry and stability that underpins
the generalization performance of modern deep convolutional
network architectures; see Section IV.

B. Generalization and regularization properties

Another critical property of a neural network architecture
is its ability to generalize from a small number of training
examples. Traditional results from statistical learning theory
[10] show that the number of training examples needed to
achieve good generalization grows polynomially with the
size of the network. In practice, however, deep networks are
trained with much fewer data than the number of parameters
(N � D regime) and yet they can be prevented from over-
fitting using very simple (and seemingly counter-productive)
regularization techniques like Dropout [11], which simply
freezes a random subset of the parameters at each iteration.

One possible explanation for this conundrum is that deeper
architectures produce an embedding of the input data that
approximately preserves the distance between data points
in the same class, while increasing the separation between
classes. This tutorial will overview the recent work of [12],
which uses tools from compressed sensing and dictionary
learning to prove that deep networks with random Gaussian
weights perform a distance-preserving embedding of the data
in which similar inputs are likely to have a similar output.
These results provide insights into the metric learning prop-
erties of the network and lead to bounds on the generalization
error that are informed by the structure of the input data.

C. Information-theoretic properties

Another key property of a network architecture is its abil-
ity to produce a good “representation of the data”. Roughly
speaking, a representation is any function of the input data

ar
X

iv
:1

71
2.

04
74

1v
1

 [
cs

.L
G

]
 1

3
D

ec
 2

01
7

that is useful for a task. An optimal representation would
be one that is “most useful” as quantified, for instance, by
information-theoretic, complexity or invariance criteria [13].
This is akin to the “state” of the system and is what an agent
would store in its memory in lieu of the data to predict future
observations. For example, the state of a Kalman filter is
an optimal representation for predicting data generated by a
linear dynamical system with Gaussian noise; in other words,
it is a minimal sufficient statistic for prediction. For complex
tasks where the data may be corrupted by “nuisances”
that do not contain information about the task, one may
also wish for this representation to be “invariant” to such
nuisances so as not to affect future predictions. In general,
optimal representations for a task can be defined as sufficient
statistics (of past or “training” data) that are also minimal,
and invariant to nuisance variability affecting future (“test”)
data [14]. Despite a large interest in representation learning, a
comprehensive theory that explains the performance of deep
networks as constructing optimal representations does not yet
exist. Indeed, even basic concepts such as sufficiency and in-
variance have received diverse treatment [9], [14], [15].

Recent work [16], [17], [18] has begun to establish
information-theoretic foundations for representations learned
by deep networks. These include the observation that the
information bottleneck loss [13], which defines a relaxed
notion of minimal sufficiency, can be used to compute
optimal representations. The information bottleneck loss can
be re-written as the sum of a cross-entropy term, which is
precisely the most commonly used loss in deep learning,
with an additional regularization term. The latter can be im-
plemented by introducing noise, similar to adaptive dropout
noise, in the learned representation [17]. The resulting form
of regularization, called information dropout in [17], shows
improved learning under resource constraints, and can be
shown to lead to “maximally disentangled” representations,
i.e., the (total) correlation among components of the repre-
sentation is minimal, thereby making the features indicators
of independent characteristics of data. Moreover, similar
techniques show improved robustness to adversarial pertur-
bations [18]. Information theory is hence expected to play a
key role in formalizing and analyzing the properties of deep
representations and suggesting new classes of regularizers.

D. Optimization properties

The classical approach to training neural networks is to
minimize a (regularized) loss using backpropagation [19],
a gradient descent method specialized to neural networks.
Modern versions of backpropagation rely on stochastic gradi-
ent descent (SGD) to efficiently approximate the gradient for
massive datasets. While SGD has been rigorously analyzed
only for convex loss functions [20], in deep learning the loss
is a non-convex function of the network parameters, hence
there are no guarantees that SGD finds the global minimizer.

In practice, there is overwhelming evidence that SGD
routinely yields good solutions for deep networks. Recent
work on understanding the quality of training argues that
critical points are more likely to be saddle points rather

x1

x2

x3

x4

y1

y2

Hidden
layer

Input
layer

Output
layer

Fig. 1. Illustration of a neural neural network with D = d1 = 4 inputs,
d2 = 5 hidden layers, and C = d3 = 2 outputs. Here, the output can be
written as y = (y1, y2) = ψ2(ψ1(xW 1)W 2), where x = (x1, . . . , x4)
is the input, W 1 ∈ R4×5 is the matrix of weights from the input layer to
the hidden layer, W 2 ∈ R5×2 is the matrix of weights from the hidden to
the output layer, and ψ1 and ψ2 are activation functions.

than spurious local minima [21] and that local minima
concentrate near the global optimum [22]. Recent work has
also revealed that local minima discovered by SGD that
lead to good generalization error belong to very flat regions
of the parameter space [23]. This motivates algorithms like
Entropy-SGD that are specialized to find such regions and
draw from similar results in the analysis of binary per-
ceptrons in statistical physics [24]; they have been shown
to perform well on deep networks [25]. Surprisingly, these
techniques from statistical physics are intimately connected
to the regularization properties of partial differential equa-
tions (PDEs) [26]. For instance, local entropy, the loss that
Entropy-SGD minimizes, is the solution of the Hamilton-
Jacobi-Bellman PDE and can therefore be written as a
stochastic optimal control problem, which penalizes greedy
gradient descent. This direction further leads to connections
between variants of SGD with good empirical performance
and standard methods in convex optimization such as inf-
convolutions and proximal methods. Researchers are only
now beginning to unravel the loss functions of deep networks
in terms of their topology, which dictates the complexity of
optimization, and their geometry, which seems to be related
to generalization properties of the classifiers [27], [28], [29].

This tutorial will overview recent work showing that the
error surface for high-dimensional non-convex optimization
problems such as deep learning has some benign properties.
For example, the work of [30], [31] shows that for certain
classes of neural networks for which both the loss function
and the regularizer are sums of positively homogeneous
functions of the same degree, a local optimum such that many
of its entries are zero is also a global optimum. These results
will also provide a possible explanation for the success of
RELUs, which are positively homogeneous functions. Par-
ticular cases of this framework include, in addition to deep
learning, matrix factorization and tensor factorization [32].

E. Paper outline

The remainder of this paper is organized as follows.
Section II describes the input-output map of a deep network.

Section III studies the problem of training deep networks
and establishes conditions for global optimality. Section
IV studies invariance and stability properties of scattering
networks. Section V studies structural properties of deep
networks, such as metric properties of the embedding as well
as bounds on the generalization error. Section VI studies
information-theoretic properties of deep representations.

II. PRELIMINARIES

A deep network is a hierarchical model where each layer
applies a linear transformation followed by a non-linearity to
the preceding layer. Specifically, let X ∈ RN×D be the input
data,1 where each row of X is a D-dimensional data point
(e.g., a grayscale image with D pixels) and N is the number
of training examples. Let W k ∈ Rdk−1×dk be a matrix
representing a linear transformation applied to the output of
layer k − 1, Xk−1 ∈ RN×dk−1 , to obtain a dk-dimensional
representation Xk−1W

k ∈ RN×dk at layer k. For example,
each column of W k could represent a convolution with some
filter (as in convolutional neural networks) or the application
of a linear classifier (as in fully connected networks). Let ψk :
R→ R be a non-linear activation function, e.g., a hyperbolic
tangent ψk(x) = tanh(x), a sigmoid ψk(x) = (1 + e−x)−1,
or a rectified linear unit (ReLU) ψk(x) = max{0, x}.2 This
non-linearity is applied to each entry of Xk−1W

k to generate
the kth layer of a neural network as Xk = ψk(Xk−1W

k).
The output XK of the network is thus given by (see Fig. 1):

Φ(X,W 1, . . . ,WK) = ψK(ψK−1(· · ·
ψ2(ψ1(XW 1)W 2) · · ·WK−1)WK).

(1)

Note that Φ is an N × C matrix, where C = dK is the
dimension of the output of the network, which is equal to
the number of classes in the case of a classification problem.
Notice also that the map Φ can be seen as a function of the
network weights W = {W k}Kk=1 with a fixed input X , as
will be the case when we discuss the training problem in
III. Alternatively, we can view the map Φ as a function of
the input data X with fixed weights W , as will be the case
when we discuss properties of this map in Sections IV-VI.

III. GLOBAL OPTIMALITY IN DEEP LEARNING

This section studies the problem of learning the parameters
W = {W k}Kk=1 of a deep network from N training examples
(X,Y). In a classification setting, each row of X ∈ RN×D
denotes a data point in RD and each row of Y ∈ {0, 1}N×C
denotes the membership of each data point to one out of C
classes, i.e., Yjc = 1 if the jth row of X belongs to class c ∈
{1, . . . , C} and Yjc = 0 otherwise. In a regression setting,
the rows of Y ∈ RN×C denote the dependent variables for
the rows of X . The problem of learning the network weights
W is formulated as the following optimization problem:

min
{Wk}Kk=1

`(Y,Φ(X,W 1, . . . ,WK)) + λΘ(W 1, . . . ,WK),

(2)

1For the sake of simplicity, we assume that inputs lie in RD , but many
of the results in this paper apply also to more general inputs such as tensors
(e.g., RGB data), in which case the weights become tensors as well.

2More broadly, ψk could be a many to one function, such as max pooling.

Critical Points of Non-Convex Function Guarantees of Our Framework

(a) (i)

(b)
(c)

(d)
(e)

(f)

(g)
(h)

Fig. 2. Example critical points of a non-convex function (shown in red).
(a,c) Plateaus. (b,d) Global minima. (e,g) Local maxima. (f,h) Local minima.

where `(Y,Φ) is a loss function that measures the agree-
ment between the true output, Y , and the predicted output,
Φ(X,W) in (1), Θ is a regularization function designed to
prevent overfitting, e.g., weight decay via `2 regularization
Θ(W)=

∑K
k=1 ‖W k‖2F , and λ>0 is a balancing parameter.

A. The challenge of non-convexity in neural network training

A key challenge in neural network training is that the
optimization problem in (2) is non-convex because, even if
the loss `(Y,Φ) is typically a convex function of Φ, e.g.,
the squared loss `(Y,Φ) = ‖Y −Φ‖2F , the map Φ(X,W) is
usually a non-convex function of W due to the product of the
W k variables and the nonlinearities ψk in (1). This presents
significant challenges to existing optimization algorithms –
including (but certainly not limited to) gradient descent,
stochastic gradient descent, alternating minimization, block
coordinate descent, back-propagation, and quasi-Newton
methods – which are typically only guaranteed to converge to
a critical point of the objective function [33], [34], [35], [36].
However, for non-convex problems, the set of critical points
includes not only global minima, but also local minima, local
maxima, saddle points and saddle plateaus, as illustrated
in Fig. 2. As a result, the non-convexity of the problem
leaves the model somewhat ill-posed in the sense that it is
not just the model formulation that is important but also
implementation details, such as how the model is initialized
and particulars of the optimization algorithm, which can have
a significant impact on the performance of the model.

To address the issue of non-convexity, a common strategy
used in deep learning is to initialize the network weights
at random, update these weights using local descent, check
if the training error decreases sufficiently fast, and if not,
choose another initialization. In practice, it has been observed
that if the size of the network is large enough, this strategy
can lead to markedly different solutions for the network
weights, which give nearly the same objective values and
classification performance [22]. It has also been observed
that when the size of the network is large enough and
the non-linearity is chosen to be a ReLU, many weights
are zero, a phenomenon known as dead neurons, and the
classification performance significantly improves [37], [38],
[39], [40]. While this empirically suggests that when the size
of the network is large enough and ReLU non-linearities are
used all local minima could be global, there is currently
no rigorous theory that provides a precise mathematical
explanation for these experimentally observed phenomena.

B. Optimality for neural networks with a single hidden layer

Earlier work on global optimality for neural networks
[41] showed that for networks with a single hidden layer

Critical Points of Non-Convex Function Guarantees of Our Framework

(a) (i)

(b)
(c)

(d)
(e)

(f)

(g)
(h)

Fig. 3. Illustration of the properties of the framework of [30], [31]. Starting
from any initialization, a non-increasing path exists to a global minimizer.
Starting from points on a plateau, a simple “sliding” method exists to find
the edge of the plateau (green points).

and linear activations, the squared loss has a unique global
minimum and all other critical points are saddle points. How-
ever, when the activations are nonlinear, [42] gives examples
of networks where the backpropagation algorithm [19] fails
even with separable data. The examples are, however, not
generic, and [43], [44] show that backpropagation generally
finds a global minimizer for linearly separable data.

Later work [45] showed that for neural networks with a
single hidden layer, if the number of neurons in the hidden
layer is not fixed, but instead fit to the data through a
sparsity inducing regularization, then the process of training
a globally optimal neural network is analogous to selecting
a finite number of hidden units from a potentially infinite
dimensional space of all possible hidden units. A weighted
sum of the selected hidden units is then taken to produce the
output. The specific optimization problem is of the form

min
w
`(Y,

∑
i

hi(X)wi) + λ‖w‖1, (3)

where hi(X) represents one possible hidden unit activa-
tion in response to the training data X from an infinite
dimensional space hi(X) ∈ H of all possible hidden unit
activations. Clearly (3) is a convex optimization problem on
w (assuming `(Y,w) is convex on w) and straightforward to
solve for a finite set of hi(X) activations. However, since
H is an infinite dimensional space the primary difficulty
lies in how to select the appropriate hidden unit activations.
Nonetheless, by using arguments from gradient boosting, it is
possible to show that problem (3) can be globally optimized
by sequentially adding hidden units to the network until one
can no longer find a hidden unit whose addition will decrease
the objective function [45], [46], [47].

C. Optimality for networks with random inputs and weights

Recent work has analyzed the problem of training neural
networks with random inputs and weights. For example,
the authors of [48] study random networks with a single
hidden layer. Rather than training the network by solving
an optimization problem such as (2), the authors use tensor
decomposition methods to estimate the network weights from
high order statistical moments of the network mapping.
Moreover, the authors show that under certain assumptions
on the loss and data distribution, polynomial-time training is
possible [48]. Further, the authors of [49] study the problem
when a given initialization of a neural network is likely to
be within the basin of attraction of a global minimizer and

provide conditions that ensure a random initialization will be
within the basin of a global minimizer with high probability.

Several recent works have also analyzed the error surface
of multilayer neural networks using tools from random ma-
trix theory and statistical physics. For example, the authors of
[21] argue that, under certain assumptions, it is vastly more
likely that a critical point of a high-dimensional optimization
problem be a saddle point rather than a local minimizer.
Therefore, avoiding saddle points is the key difficulty in
high-dimensional, non-convex optimization. Likewise, the
authors of [22] show that, under certain assumptions on the
distributions of the training data and the network weight
parameters, as the number of hidden units in a network
increases, the distribution of local minima becomes increas-
ingly concentrated in a small band of objective function
values near the global optimum (and thus all local minima
become increasingly close to being global minima).

D. Global optimality for positively homogeneous networks

Recent work [30], [31] largely echoes ideas from the above
work, but takes a markedly different approach. Specifically,
[30], [31] analyzes the optimization problem in (2) using
a purely deterministic approach which does not make any
assumptions regarding the distribution of the input data, the
network weight parameter statistics, or the network initializa-
tion. With this approach, [30], [31] shows that saddle points
and plateaus are the only critical points that one needs to be
concerned with due to the fact that for networks of sufficient
size, local minima that require one to climb the objective
surface to escape from, such as (f) and (h) in Fig. 2, are
guaranteed not to exist.

More specifically, [30] studies conditions under which
the optimization landscape for the non-convex optimization
problem in (2) is such that all critical points are either global
minimizers or saddle points/plateaus, as shown in Fig. 3. The
authors show that if the network size is large enough and
the functions Φ and Θ are sums of positively homogeneous
functions of the same degree, any local minimizer such that
some of its entries are zero is also a global minimizer.
Interestingly, ReLU and max-pooling non-linearities are pos-
itively homogeneous, while sigmoids are not, which could
provide a possible explanation for the improved performance
of ReLU and max pooling. Furthermore, many state-of-the-
art networks are not trained with classical regularization,
such as an `1 or `2 norm penalty on the weight parameters
but instead rely on techniques such as dropout [11]. The
results of [30], [31] also provide strong guidance on the
design of network regularization to ensure the non-existence
of spurious local minima, showing that traditional weight
decay is not appropriate for deep networks. However, more
recently proposed forms of regularization such as Path-SGD
[50] or batch normalization [51] can be easily incorporated
into the analysis framework of [30], [31], and stochastic
regularization methods, such as dropout [11], have strong
similarities to their framework.

IV. GEOMETRIC STABILITY IN DEEP LEARNING

An important question in the path towards understanding
deep learning models is to mathematically characterize its in-
ductive bias; i.e., define the class of regression/classification
tasks for which they are predesigned to perform well, or at
least better than classical alternatives.

In the particular case of computer vision tasks, convolu-
tional archictectures provide a fundamental inductive bias at
the origin of most successful deep learning vision models. As
we explain next, the notion of geometric stability provides a
possible framework to understand its success.

Let Ω = [0, 1]d ⊂ Rd be a compact d-dimensional
Euclidean domain on which square-integrable functions X ∈
L2(Ω) are defined (for example, in image analysis applica-
tions, images can be thought of as functions on the unit
square Ω = [0, 1]2). In a supervised learning task, an un-
known function f : L2(Ω)→ Y is observed on a training set

{Xi ∈ L2(Ω), Yi = f(Xi)}i∈I , (4)

where the target space Y can be thought as being discrete
in a standard classification setup (with C = |Y| being the
number of classes), or Y = RC in a regression task.

In the vast majority of computer vision and speech analysis
tasks, the unknown function f typically satisfies the follow-
ing crucial assumptions:

1) Stationarity: Consider a translation operator3

TvX(u) = X(u− v), u, v ∈ Ω, (5)

acting on functions X ∈ L2(Ω). Depending on the task, we
assume that the function f is either invariant or equivariant
with respect to translations. In the former case, we have
f(TvX) = f(X) for any X ∈ L2(Ω) and v ∈ Ω.
This is typically the case in object classification tasks. In
the latter, we have f(TvX) = Tvf(X), which is well-
defined when the output of the model is a space in which
translations can act upon (for example, in problems of object
localization, semantic segmentation, or motion estimation).
Our definition of invariance should not be confused with the
traditional notion of translation invariant systems in signal
processing, which corresponds to translation equivariance in
our language (since the output translates whenever the input
translates).

2) Local deformations and scale separation: Similarly, a
deformation Lτ , where τ : Ω→ Ω is a smooth vector field,
acts on L2(Ω) as LτX(u) = X(u − τ(u)). Deformations
can model local translations, changes in viewpoint, rotations
and frequency transpositions [9]. Most tasks studied in
computer vision are not only translation invariant/equivariant,
but, more importantly, also stable with respect to local
deformations [52], [9]. In tasks that are translation invariant
we have

|f(LτX)− f(X)| ≈ ‖∇τ‖ , (6)

for all X, τ , where ‖∇τ‖ measures the smoothness of a given
deformation field. In other words, the quantity to be predicted

3 We assume periodic boundary conditions to ensure that the operation
is well-defined over L2(Ω).

does not change much if the input image is slightly deformed.
In tasks that are translation equivariant, we have

|f(LτX)− Lτf(X)| ≈ ‖∇τ‖. (7)

This property is much stronger than stationarity, since the
space of local deformations has high dimensionality – of the
order of RD when we discretize images with D pixels, as
opposed to the d-dimensional translation group, which has
only d = 2 dimensions in the case of images.

Assumptions (6)–(7) can be leveraged to approximate f
from features Φ(X) that progressively reduce the spatial
resolution. Indeed, extracting, demodulating and downsam-
pling localized filter responses creates local summaries that
are insensitive to local translations, but this loss of loss
of sensitivity does not affect our ability to approximate f ,
thanks to (6)–(7). To illustrate this principle, denote by

Z(a1, a2; v) = Prob(X(u) = a1 and X(u+v) = a2) (8)

the joint distribution of two image pixels at an offset v
from each other. In the presence of long-range statistical
dependencies, this joint distribution will not be separable for
any v. However, the deformation stability prior states that
Z(a1, a2; v) ≈ Z(a1, a2; v(1+ε)) for small ε. In other words,
whereas long-range dependencies indeed exist in natural
images and are critical to object recognition, they can be
captured and down-sampled at different scales. Although this
principle of stability to local deformations has been exploited
in the computer vision community in models other than
CNNs, for instance, deformable parts models [53], CNNs
strike a good balance in terms of approximation power,
optimization, and invariance.

Indeed, stationarity and stability to local translations are
both leveraged in convolutional neural networks (CNN). A
CNN consists of several convolutional layers of the form
X̃ = CW (X), acting on a p-dimensional input X(u) =
(X1(u), . . . , Xp(u)) by applying a bank of filters W =
(wl,l′), l = 1, . . . , q, l′ = 1, . . . , p and point-wise non-
linearity ψ,

X̃l(u) = ψ

(
p∑

l′=1

(Xl′ ? wl,l′)(u)

)
, (9)

producing a q-dimensional output X̃(u) =
(X̃1(u), . . . , X̃q(u)) often referred to as the feature
maps. Here,

(X ? w)(u) =

∫
Ω

X(u− u′)w(u′)du′ (10)

denotes the standard convolution. According to the local
deformation prior, the filters W have compact spatial support.

Additionally, a downsampling or pooling layer X̃ = P (X)
may be used, defined as

X̃l(u) = P ({Xl(u
′) : u′ ∈ N (u)}), l = 1, . . . , q, (11)

where N (u) ⊂ Ω is a neighborhood around u and P is a
permutation-invariant function such as an average-, energy-,
or max-pooling).

A convolutional network is constructed by composing sev-
eral convolutional and optionally pooling layers, obtaining a
generic hierarchical representation

ΦW (X) = (CW (K) · · ·P · · · ◦ CW (2) ◦ CW (1))(X), (12)

where W = {W (1), . . . ,W (K)} is the hyper-vector of the
network parameters (all the filter coefficients). The output
features enjoy translation invariance/covariance depending
on whether spatial resolution is progressively lost by means
of pooling or kept fixed. Moreover, if one specifies the convo-
lutional tensors to be complex wavelet decomposition opera-
tors and uses complex modulus as point-wise nonlinearities,
one can provably obtain stability to local deformations [54].
Although this stability is not rigorously proved for generic
compactly supported convolutional tensors, it underpins the
empirical success of CNN architectures across a variety of
computer vision applications [1].

A key advantage of CNNs explaining their success in
numerous tasks is that the geometric priors on which CNNs
are based result in a sample complexity that avoids the
curse of dimensionality. Thanks to the stationarity and local
deformation priors, the linear operators at each layer have a
constant number of parameters, independent of the input size
D (number of pixels in an image). Moreover, thanks to the
multiscale hierarchical property, the number of layers grows
at a rate O(logD), resulting in a total learning complexity
of O(logD) parameters.

Finally, recently there has been an effort to extend the
geometric stability priors to data that is not defined over an
Euclidean domain, where the translation group is generally
not defined. In particular, researchers are exploiting geometry
in general graphs via the spectrum of graph Laplacians and
its spatial counterparts; see [55] for a recent survey on those
advances.

V. STRUCTURE BASED THEORY FOR DEEP LEARNING

A. Structure of the data throughout a neural network

An important aspect for understanding better deep learning
is the relationship between the structure of the data and the
deep network. For a formal analysis, consider the case of a
network that has random i.i.d. Gaussian weights, which is
a common initialization in training deep networks. Recent
work [56] shows that such networks with random weights
preserve the metric structure of the data as they propagate
along the layers, allowing for stable recovery of the original
data from the features calculated by the network – a property
that is often encountered in general deep networks [57], [58].

More precisely, the work of [56] shows that the input to
the network can be recovered from the network’s features
at a certain layer if their size is proportional to the intrinsic
dimension of the input data. This is similar to data recon-
struction from a small number of random projections [59],
[60]. However, while random projections preserve the Eu-
clidean distance between two inputs up to a small distortion,
each layer of a deep network with random weights distorts
this distance proportionally to the angle between the two
inputs: the smaller the angle, the stronger the shrinkage of

the distance. Therefore, the deeper the network, the stronger
the shrinkage achieved. Note that this does not contradict
the fact that it is possible to recover the input from the
output; even when properties such as lighting, pose and
location are removed from an image (up to certain extent),
the resemblance to the original image is still maintained.

As random projection is a universal sampling strategy for
low-dimensional data [59], [60], [61], deep networks with
random weights are a universal system that separates any
data (belonging to a low-dimensional model) according to the
angles between the data points, where the general assumption
is that there are large angles between different classes [62],
[63]. As the training of the projection matrix adapts it to
better preserve specific distances over others, the training of
a network prioritizes intra-class angles over inter-class ones.
This relation is alluded to by the proof techniques in [56]
and is empirically manifested by observing the angles and
Euclidean distances at the output of trained networks.

By using the theory of 1-bit compressed sensing, [64]
shows that each layer of a network preserves the metric
of its input data in the Gromov-Hausdorff sense up to a
small constant δ, under the assumption that these data reside
in a low-dimensional manifold denoted by K. This allows
drawing conclusions on the tessellation of the space created
by each layer and the relationship between the operation
of these layers and local sensitive hashing (LSH). It also
implies that it is possible to retrieve the input of a layer, up
to certain accuracy, from its output. This shows that every
layer preserves the important information of the data.

An analysis of the behavior of the Euclidean distances and
angles in the data along the network reveals an important
effect of the ReLU. Without a non-linearity, each layer
is simply a random projection for which Euclidean dis-
tances are approximately preserved. The addition of a ReLU
makes the system sensitive to the angles between points.
In this case, the network tends to decrease the Euclidean
distances between points with small angles between them
(“same class”), more than the distances between points with
large angles between them (“different classes”). Still, low-
dimensional data at the input remain such throughout the
entire network, i.e., deep networks (almost) do not increase
the intrinsic dimension of the data [56]. This is related to
the recent work in [65] that claims that deep networks may
be viewed a sparse coding procedure leading to guarantees
on the uniqueness of the representation calculated by the
network and its stability.

As random networks are blind to the data labels, training
may select discriminatively the angles that cause the dis-
tance deformation. Therefore, it will cause distances between
different classes to increase more than the distances within
the same class. This is demonstrated in several simulations
for different deep networks. It is observed that a potential
main goal of the training of the network is to treat the
class boundary points while keeping the other distances
approximately the same.

B. Generalization error

The above suggests that there is a relation between the
structure of the data and the error the network achieves in
training, which leads to study the relationship between the
generalization error in deep networks and the data structure.
Generalization error – the difference between the empirical
error and the expected error – is a fundamental concept in
statistical learning theory. Generalization error bounds offer
insight into why learning from training samples is possible.

Consider a classification problem with a data point X ∈
X ⊆ RD that has a corresponding class label Y ∈
Y , where C is the number of classes. A training set of
N samples drawn from a distribution P is denoted by
ΥN = {(Xi, Yi)}Ni=1 and the loss function is denoted by
`(Y,Φ(X,W)), which measures the discrepancy between
the true label Y and the estimated label Φ(X,W) provided
by the classifier. The empirical loss of a network Φ(·,W)
associated with the training set ΥN is defined as

`emp(Φ) =
1

N

∑
Xi∈ΥN

` (Yi,Φ(Xi,W)) , (13)

and the expected loss as

`exp(Φ) = E(X,Y)∼P [` (Y,Φ(X,W))] . (14)

The generalization error is then given as:

GE(Φ) = |`exp(Φ)− `emp(Φ)| . (15)

Various measures such as the the VC-dimension [66], [67],
the Rademacher or Gaussian complexities [68] and algorithm
robustness [69] have been used to bound the GE in the
context of deep networks. However, these measures do not
offer an explanation for good deep network generalization in
practice where the number of parameters can often be larger
than the number of training samples [70] or the networks are
very deep [71]. For example, the VC-dimension of a deep
network with the hard-threshold non-linearity is equal to the
number of parameters in the network, which implies that
the sample complexity is linear in the number of parameters
of the network. On the other hand, the work [72] bounds
the generalization error independently of the number of
parameters. Yet, in its bound the generalization error of deep
network with ReLUs scales exponentially with the network
depth. Similarly, the authors in [69] show that deep networks
are robust provided that the `1-norm of the weights in each
layer is bounded. The bounds are exponential in the `1-norm
of the weights if the norm is greater than 1.

An alternative route followed by [28], [29], [69], [73]
bounds the generalization error in terms of the networks’
classification margin, which is independent of the depth
and size but takes into account the structure of the data
(considering its covering number) and therefore avoids the
above issues. As it is hard to calculate the input margin
directly, in [28] it is tied to the Jacobian matrix and the
loss of the deep networks showing that bounding the spectral
norm of the Jacobian matrix reduces the generalization error.
This analysis is general to arbitrary network structures, types

TABLE I
CLASSIFICATION ACC. [%] OF RESNET CIFAR-10

train samples ResNet ResNet + Jac. reg.

2500 55.69 62.79
10000 71.79 78.70

50000 + aug. 93.34 94.32

of non-linearities and pooling operations. Furthermore, a
relationship between the generalization error, the invariance
in the data and the network is formally characterized in [29].

Using the relationship between the generalization error and
the network Jacobian matrix, a new Jacobian based regu-
larization strategy is developed in [29] and its advantage is
demonstrated for several networks and datasets. For example,
Table I shows the improvement achieved when using this
regularization with the Wide ResNet architecture [74] for
CIFAR-10 with different numbers of training examples.

A related theory to the one presented above is the one
in [50], [75]. These works study the relationship between
the generalization error and the minimization of the network
loss using SGD. They provide modifications for SGD that
improves the error achieved by the network.

VI. TOWARDS AN INFORMATION-THEORETIC
FRAMEWORK

The loss function of choice for training deep networks
to solve supervised classification problems is the empirical
cross-entropy

˜̀(W) = EP (X,Y)(− log Φ(X,W)), (16)

This loss function is prone to overfitting, as the network
could trivially memorize the training data instead of learn-
ing the underlying distribution. This problem is usually
addressed by regularization, which can be explicit (e.g., the
norm of W , known as weight decay), or implicit in stochastic
gradient descent. It was suggested by [76] almost a quarter
century ago that better regularization, hence less overfitting,
might be achieved by limiting the information stored in the
weight, KL(p(W |X,Y) ‖ p(W)), where p(W) is a prior
on the weights. Choosing this regularizer leads to the loss
function

`(W) = H(Y |X,W) + λKL(p(W |X,Y) ‖ p(W)) (17)

where the first term denotes the empirical conditional cross-
entropy obtained from ˜̀(W). For λ = 1, this is the
variational lower bound on the observed data distribution
pθ(Y |X), and can therefore be seen as a form of Bayesian
inference of the weights. More generally, this is equivalent
to the information bottleneck Lagrangian. The first term
is the same as the empirical cross-entropy and ensures
that information stored in the weights is sufficient for the
task Y , while the second term minimizes the amount of
information stored. Thus, the weights learned by minimizing
cross-entropy, with a KL regularizer, approximate a minimal
sufficient statistic of the training set. Computing the KL
term and optimizing ` was considered a show-stopper until

recently, when advances in Stochastic Gradient Variational
Bayes [77], [78] made efficient optimization possible.

But for a representation to be useful, it should not just
efficiently memorize past (training) data. It should also
reduce the effect of nuisance variability affecting future (test)
data. Indeed, most of the variability in imaging data can
be ascribed to the effects of illumination and viewpoint,
quotienting out which leaves a thin set [79]. As we have
already pointed out, deep networks are known to reduce
the effects of nuisance variability in test data. This can be
partly achieved through the architecture, in particular multi-
scale convolutional structures. Some may be ascribed to the
optimization procedure, that converges to “flat minima.” But
the choice of regularizer is also responsible for the networks’
ability to discount nuisance variability. Denoting by X be
the input sample, Y the target variable, and Z ∼ p(Z|X)
the (stochastic) representation of X learned by a layer in the
network, the tradeoff between sufficiency an minimality of
Z is formalized by the information bottleneck Lagrangian

`(W) = H(Y |Z,W) + λI(Z;X), (18)

where the first term ensures that the representation Z is suf-
ficient for Z, while the second term ensures its information
content remains minimal, i.e. that nuisances are filtered out.

Notice that, while formally equivalent, the losses in (17)
and (18) are conceptually different: In the former, the weights
are a representation of the training set that is minimal
and sufficient. In the latter, the activations are a minimal
representation of the test sample. We conjecture that the two
are related, and that the relation informs the generalization
properties of the network, but specific bounds have yet been
shown.

Different choices of the noise distribution, and different
models of the marginal distribution p(Z) lead to slightly
different analyses. For example, [18] considers the case
of additive Gaussian noise and Gaussian marginals, while
[17] study multiplicative noise distributions, and considers
both a scale invariant log-uniform marginal (the only one
compatible with the fact that networks with ReLU activations
are scale invariant), and a log-normal marginal distribution.
Interestingly, the special case in which the multiplicative
noise is chosen from a Bernoulli distribution reduces to
the well-known practice of Dropout [76], while choosing
from a multiplicative Gaussian distribution leads to Gaussian
Dropout [78].

In order to compute the term I(Z;X), it is commonly
assumed that the activations are mutually independent, that
is, that the marginal p(Z) is factorized; [17] shows that
making this assumption corresponds to minimizing a mod-
ified loss function, which also reduces the total correlation
TC(Z) of the activations. Therefore, a choice dictated by
convenience in order to explicitly compute the information
bottleneck Lagrangian, yields a disentangled representation,
with entanglement measured by total correlation.

It is remarkable that empirical practice has managed to
converge to the use of the cross-entropy loss with dropout,
that happens to be what would have been prescribed by first

principles, since for certain choices of distribution, training
is equivalent to minimizing the information bottleneck La-
grangian, that yields an approximation of a minimal sufficient
invariant statistic, which define an optimal representation.
It is only recently that developments in theory have made
this association possible, and developments in optimization
and hardware have made deep neural networks a sensational
success.

VII. ACKNOWLEDGMENTS

René Vidal acknowledges grant NSF 1618485. Raja
Giryes acknowledges the Global Innovation Fund (GIF). Ste-
fano Soatto acknowledges grants ONR N00014-15-1-2261,
ARO W911NF-15-1-0564/66731-CS, and AFOSR FA9550-
15-1-0229.

REFERENCES

[1] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning.
Nature, 521(7553):436–444, 2015.

[2] V. Nair and G.E. Hinton. Rectified linear units improve restricted
boltzmann machines. In International conference on machine learning,
pages 807–814, 2010.

[3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity
mappings in deep residual networks. In European Conference on
Computer Vision, pages 630–645. Springer, 2016.

[4] Jia Deng, Wei Dong, R Socher, Li-Jia Li, and Li Fei-Fei. ImageNet:
A large-scale hierarchical image database. In IEEE Conference on
Computer Vision and Pattern Recognition, pages 248–255. IEEE, June
2009.

[5] G. Cybenko. Approximation by superpositions of a sigmoidal function.
Mathematics of Control Signals and Systems, 2(4):303–314, 1989.

[6] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward
networks are universal approximators. Neural networks, 2(5):359–366,
1989.

[7] Kurt Hornik. Approximation capabilities of multilayer feedforward
networks. Neural Networks, 4(2):251–257, 1991.

[8] Andrew R Barron. Approximation and estimation bounds for artificial
neural networks. Machine Learning, 14(1):115–133, 1994.

[9] J. Bruna and S. Mallat. Invariant scattering convolution networks.
Trans. PAMI, 35(8):1872–1886, 2013.

[10] P. Bartlett and W. Maass. Vapnik-Chervonenkis dimension of neural
nets. The handbook of brain theory and neural networks, pages 1188–
1192, 2003.

[11] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov. Dropout: A simple way to prevent neural networks from
overfitting. The Journal of Machine Learning Research, 15(1):1929–
1958, 2014.

[12] R. Giryes, G. Sapiro, and A. Bronstein. Deep neural networks with
random gaussian weights: A universal classification strategy? IEEE
Transactions on Signal Processing, 64(13):3444–3457, 2016.

[13] N. Tishby, F. C. Pereira, and W. Bialek. The information bottleneck
method. In Proc. of the Allerton Conf., 2000.

[14] S. Soatto and A. Chiuso. Visual representations: Defining properties
and deep approximations. Proc. of the Intl. Conf. on Learning
Representations (ICLR); ArXiv: 1411.7676, May 2016.

[15] F. Anselmi, L. Rosasco, and T. Poggio. On invariance and selectivity
in representation learning. arXiv preprint arXiv:1503.05938, 2015.

[16] Ravid Shwartz-Ziv and Naftali Tishby. Opening the black box of deep
neural networks via information. arXiv preprint arXiv:1703.00810,
2017.

[17] A. Achille and S. Soatto. Information dropout: Learning optimal
representations through noisy computation. arXiv:1611.01353, 2016.

[18] Alexander A Alemi, Ian Fischer, Joshua V Dillon, and Kevin
Murphy. Deep variational information bottleneck. arXiv preprint
arXiv:1612.00410, 2016.

[19] PJ Werbos. Beyond regression: New tools for predictions and analysis
in the behavioral science. Cambridge, MA, itd. PhD thesis, Harvard
University, 1974.

[20] Mark Schmidt, Nicolas Le Roux, and Francis Bach. Minimizing
finite sums with the stochastic average gradient. Mathematical
Programming, pages 1–30, 2013.

[21] Yann N Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho,
Surya Ganguli, and Yoshua Bengio. Identifying and attacking the
saddle point problem in high-dimensional non-convex optimization.
In Neural Information Processing Systems, pages 2933–2941, 2014.

[22] A. Choromanska, M. Henaff, M. Mathieu, G.B Arous, and Y. LeCun.
The loss surfaces of multilayer networks. In International Conference
on Artificial Intelligence and Statistics, pages 192–204, 2015.

[23] Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua Ben-
gio. Sharp minima can generalize for deep nets. arXiv preprint
arXiv:1703.04933, 2017.

[24] C. Baldassi, A. Ingrosso, C. Lucibello, L. Saglietti, and R. Zecchina.
Local entropy as a measure for sampling solutions in constraint
satisfaction problems. Journal of Statistical Mechanics: Theory and
Experiment, 2016(2):023301, 2016.

[25] P. Chaudhari, A. Choromanska, S. Soatto, Y. LeCun, C. Baldassi,
C. Borgs, J. Chayes, L. Sagun, and R. Zecchina. Entropy-SGD:
Biasing gradient descent into wide valleys. International Conference
of Learning and Representations, 2017.

[26] Pratik Chaudhari, Adam Oberman, Stanley Osher, Stefano Soatto, and
Guillaume Carlier. Deep relaxation: partial differential equations for
optimizing deep neural networks. arXiv:1704.04932, 2017.

[27] C Daniel Freeman and Joan Bruna. Topology and geometry of half-
rectified network optimization. ICLR, 2017.

[28] J. Sokolić, R. Giryes, G. Sapiro, and M. Rodrigues. Robust large
margin deep neural networks. to appear in IEEE Transactions on
Signal Processing, 2017.

[29] J. Sokolić, R. Giryes, G. Sapiro, and M. Rodrigues. Generalization
error of invariant classifiers. In AISTATS, 2017.

[30] B. Haeffele and R. Vidal. Global optimality in neural network training.
In IEEE Conference on Computer Vision and Pattern Recognition,
2017.

[31] B. Haeffele and R. Vidal. Global optimality in tensor factorization,
deep learning, and beyond. arXiv, abs/1506.07540, 2015.

[32] B. Haeffele, E. Young, and R. Vidal. Structured low-rank matrix fac-
torization: Optimality, algorithm, and applications to image processing.
In International Conference on Machine Learning, pages 2007–2015,
2014.

[33] Julien Mairal, Francis Bach, Jean Ponce, and Guillermo Sapiro. Online
learning for matrix factorization and sparse coding. The Journal of
Machine Learning Research, 11:19–60, 2010.

[34] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learn-
ing representations by back-propagating errors. Cognitive Modeling,
5, 1988.

[35] Stephen J Wright and Jorge Nocedal. Numerical Optimization,
volume 2. Springer New York, 1999.

[36] Yangyang Xu and Wotao Yin. A block coordinate descent method for
regularized multiconvex optimization with applications to nonnegative
tensor factorization and completion. SIAM Journal on Imaging
Sciences, 6(3):1758–1789, 2013.

[37] George E Dahl, Tara N Sainath, and Geoffrey E Hinton. Improving
deep neural networks for lvcsr using rectified linear units and dropout.
In IEEE International Conference on Acoustics, Speech and Signal
Processing, pages 8609–8613, 2013.

[38] Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. Rectifier non-
linearities improve neural network acoustic models. In International
Conference on Machine Learning, volume 30, 2013.

[39] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet
classification with deep convolutional neural networks. In Neural
Information Processing Systems, pages 1097–1105, 2012.

[40] Matthew D. Zeiler, M. Ranzato, Rajat Monga, M. Mao, K. Yang,
Quoc Viet Le, Patrick Nguyen, A. Senior, Vincent Vanhoucke, Jeffrey
Dean, and Geoffry E. Hinton. On rectified linear units for speech
processing. In IEEE International Conference on Acoustics, Speech
and Signal Processing, pages 3517–3521, 2013.

[41] P. Baldi and K. Hornik. Neural networks and principal component
analysis: Learning from examples without local minima. Neural
Networks, 2(1):53–58, 1989.

[42] Martin Brady, Raghu Raghavan, and Joseph Slawny. Back propagation
fails to separate where perceptrons succeed. IEEE Transactions on
Circuits and Systems, 36(5):665–674, 1989.

[43] M. Gori and A. Tesi. Backpropagation converges for multi-layered

networks and linearly-separable patterns. In International Joint Con-
ference on Neural Networks, volume 2, page 896. IEEE, 1991.

[44] M. Gori and A. Tesi. On the problem of local minima in backpropaga-
tion. IEEE Transactions on Pattern Analysis and Machine Intelligence,
14(1):76–86, 1992.

[45] Yoshua Bengio, Nicolas L Roux, Pascal Vincent, Olivier Delalleau,
and Patrice Marcotte. Convex neural networks. In Neural Information
Processing Systems, pages 123–130, 2005.

[46] Jerome H Friedman. Greedy function approximation: a gradient
boosting machine. Annals of Statistics, pages 1189–1232, 2001.

[47] Llew Mason, Jonathan Baxter, Peter L. Bartlett, and Marcus R. Frean.
Boosting algorithms as gradient descent. In Neural Information
Processing Systems, pages 512–518, 2000.

[48] Majid Janzamin, Hanie Sedghi, and Anima Anandkumar. Beating the
perils of non-convexity: Guaranteed training of neural networks using
tensor methods. arXiv preprint arXiv:1506.08473, 2015.

[49] Itay Safran and Ohad Shamir. On the quality of the initial basin
in overspecified neural networks. In International Conference on
Machine Learning, pages 774–782, 2016.

[50] B. Neyshabur, R. Salakhutdinov, and N. Srebro. Path-SGD: Path-
normalized optimization in deep neural networks. In Neural Informa-
tion Processing Systems, pages 2422–2430, 2015.

[51] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In International
Conference on Machine Learning, pages 448–456, 2015.

[52] Stéphane Mallat. Understanding deep convolutional networks. Phil.
Trans. R. Soc. A, 374(2065), 2016.

[53] P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan. Object
detection with discriminatively trained part-based models. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 32(9):1627–
1645, 2010.

[54] Stéphane Mallat. Group invariant scattering. Communications on Pure
and Applied Mathematics, 65(10):1331–1398, 2012.

[55] M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst.
Geometric deep learning: going beyond Euclidean data. arXiv preprint
arXiv:1611.08097, 2016.

[56] R. Giryes, G. Sapiro, and A. Bronstein. Deep neural networks with
random Gaussian weights: a universal classification strategy? IEEE
Trans. Sig. Proc., 64(13):3444–3457, July 2016.

[57] J. Bruna, A. Szlam, and Y. LeCun. Signal recovery from lp pooling
representations. In Int. Conf. on Machine Learning (ICML), pages
307–315, 2014.

[58] A. Mahendran and A. Vedaldi. Understanding deep image represen-
tations by inverting them. In IEEE Conference on Computer Vision
and Pattern Recognition, pages 5188–5196, 2015.

[59] E. J. Candès and T. Tao. Near-optimal signal recovery from random
projections: Universal encoding strategies? IEEE Trans. Inf. Theory,
52(12):5406 –5425, Dec. 2006.

[60] V. Chandrasekaran, B. Recht, P. A. Parrilo, and A. S. Willsky.
The convex geometry of linear inverse problems. Foundations of
Computational Mathematics, 12(6):805–849, 2012.

[61] R. Giryes, Y. Eldar, A. Bronstein, and G. Sapiro. Tradeoffs between
convergence speed and reconstruction accuracy in inverse problems.
arXiv:1605.09232, 2017.

[62] L. Wolf and A. Shashua. Learning over sets using kernel principal
angles. Journal of Machine Learning Research, 4:913–931, Oct. 2003.

[63] E. Elhamifar and R. Vidal. Sparse subspace clustering: Algorithm,
theory, and applications. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 35(11):2765–2781, 2013.

[64] Y. Plan and R. Vershynin. Dimension reduction by random hyperplane
tessellations. Discrete and Computational Geometry, 51(2):438–461,
2014.

[65] V. Papyan, Y. Romano, and M. Elad. Convolutional Neural Networks
Analyzed via Convolutional Sparse Coding. arXiv:1607.08194, 2016.

[66] Vladimir N Vapnik. An overview of statistical learning theory. IEEE
Transactions on Neural Networks, 10(5):988–999, September 1999.

[67] S Shalev-Shwartz and S Ben-David. Understanding machine learning:
from theory to algorithms. Cambridge University Press, 2014.

[68] Peter L Bartlett and Shahar Mendelson. Rademacher and Gaussian
complexities: risk bounds and structural results. Journal of Machine
Learning Research, 3:463–482, 2002.

[69] Huan Xu and Shie Mannor. Robustness and generalization. Machine
Learning, 86(3):391–423, 2012.

[70] C. Zhang, S. Bengio, M. Hardt, and B. Recht. Understanding
deep learning requires rethinking generalization. In International
Conference on Learning Representations, 2017.

[71] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In IEEE Conference on
Computer Vision and Pattern Recognition, December 2016.

[72] B. Neyshabur, R. Tomioka, and N. Srebro. Norm-based capacity
control in neural networks. In Conference on Learning Theory, pages
1376–1401, 2015.

[73] J. Huang, Q. Qiu, G. Sapiro, and R. Calderbank. Discriminative robust
transformation learning. In Neural Information Processing Systems,
pages 1333–1341, 2015.

[74] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks.
arXiv:1605.07146, 2016.

[75] Moritz Hardt, Benjamin Recht, and Yoram Singer. Train faster, gen-
eralize better: Stability of stochastic gradient descent. In Proceedings
of the 33rd International Conference on International Conference
on Machine Learning - Volume 48, ICML’16, pages 1225–1234.
JMLR.org, 2016.

[76] G. Hinton and D. Van Camp. Keeping the neural networks simple
by minimizing the description length of the weights. In Annual
Conference on Computational Learning Theory, pages 5–13. ACM,
1993.

[77] D. Kingma, T. Salimans, and M. Welling. Variational dropout and
the local reparameterization trick. In Neural Information Processing
Systems, pages 2575–2583, 2015.

[78] D. Kingma and M. Welling. Auto-encoding variational bayes. arXiv
preprint arXiv:1312.6114, 2013.

[79] G. Sundaramoorthi, P. Petersen, V. S. Varadarajan, and S. Soatto. On
the set of images modulo viewpoint and contrast changes. In IEEE
Conference on Computer Vision and Pattern Recognition, 2009.

	I Introduction
	I-A Approximation, depth, width and invariance properties
	I-B Generalization and regularization properties
	I-C Information-theoretic properties
	I-D Optimization properties
	I-E Paper outline

	II Preliminaries
	III Global Optimality in Deep Learning
	III-A The challenge of non-convexity in neural network training
	III-B Optimality for neural networks with a single hidden layer
	III-C Optimality for networks with random inputs and weights
	III-D Global optimality for positively homogeneous networks

	IV Geometric Stability in Deep Learning
	V Structure Based Theory for Deep Learning
	V-A Structure of the data throughout a neural network
	V-B Generalization error

	VI Towards an Information-Theoretic Framework
	VII ACKNOWLEDGMENTS
	References

