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A function space analysis of finite neural networks
with insights from sampling theory

Raja Giryes

Abstract—This work suggests using sampling theory to analyze
the function space represented by neural networks. First, it
shows, under the assumption of a finite input domain, which is the
common case in training neural networks, that the function space
generated by multi-layer networks with non-expansive activation
functions is smooth. This extends over previous works that show
results for the case of infinite width ReLU networks. Then,
under the assumption that the input is band-limited, we provide
novel error bounds for univariate neural networks. We analyze
both deterministic uniform and random sampling showing the
advantage of the former.

I. INTRODUCTION

Recently, it has been shown that neural networks with a
univariate output and bounded weights perform a smooth
interpolation between their training data [1], [2], [3]. These
works provide an extension to many recent results that have
studied the approximation power of neural networks. While
in the general universal approximation theory, either in the
infinite width case [4], [5] or the finite width case [6], it
is shown that virtually any function may be approximated,
the new results demonstrate that by adding constraints on the
network weights, we get a smaller function space although the
width of the network is infinite.

An interesting question that may arise as a follow up to these
works that focused on the approximation power of the network
is whether we may use their results to get new estimation error
bounds for networks trained on n data samples. One intriguing
phenomenon of neural networks is that for “natural good data”
they both overfit the training data and generalize well at the
same time, while for random “bad” data they just perform
memorization with no generalization [7]. This phenomenon
hints that the generalization of the network depends also on
the structure of the input data and not only on the network
parameters.

In this work, we focus on the case of data that is generated
by band-limited functions. We show for a univariate neural
network that when it overfits the training data, its error scales
as O(1/n3), where n is the size of the training data. Our result
provides a concrete example where the memorization of the
network helps its generalization. Note that it naturally excludes
the case of random data, which have an infinite bandwidth. As
we shall see hereafter in the proof of our results, the fact that
the network fits all the training examples is a key element
in its ability to get low error for all the other points of the
function that generated the data.

The contribution of our work is twofold. First, we show
that the function represented by a finite width network with
bounded weights have a bounded total variation of its first

derivative, i.e.,
∫ π
−π f

′′(x)dx <∞, where [−π, π] is assumed
to be the input domain. This shows that finite multi-layer
networks perform a smooth interpolation of their training data.
This extends over previous works that have been limited to a
single layer and infinite width. The second is providing gen-
eralization results both for infinite width networks and finite
width ones. We use tools from sampling theory to analyze the
error of the network both in the case of deterministic uniform
sampling (Theorem 4) and the more realistic case of random
sampling (Theorem 5).

II. RELATED WORK

A relationship between network representation and a given
function space was shown in [8], [9]. In particular, these
works focused on the ridgelet transform. The first studied
the approximation power of networks with some special
activation function using ridgelets. The second presented a
connection between neural networks with ReLU activation and
the ridgelet transform. They demonstrated that such networks
satisfy the universal approximation property. Another line of
works showed that networks learn first lower frequencies in
the data [10], [11].

The works in [1], [2], [3] have shown that shallow infinite
width networks with bounded weights perform a smooth
(spline) interpolation of the training data. Another connection
between neural networks and splines was exhibited in [12]. It
focused on the specific case of max affine splines and used
them to show a relationship between template matching and
networks.

A connection between adding a regularization on the
weights of the network and their generalization was shown
in various works. While classic generalization error bounds
for neural networks presented a dependency on the number
of parameters in the network [13], Rademacher complexity
(RC) based analysis showed that by bounding the norm of the
weights, the generalization error is independent of the network
width [14], [15]. Yet, the deficiency of these bounds is their
independence of the input data; thus, they do not capture cases
such as overfitting of random data [7].

Margin based approaches, which take into account also the
input distribution, mitigate this issue [16], [17]. Note that
“`2 regularization does not significantly impact margins or
generalization” [17], where the analysis here depends on the
consequence of this regularization. Thus, these approaches are
complementary to our analysis. Bounding the weights is also
shown useful under the kernel (RKHS) assumption [18], which
is not required in our work.
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III. NEURAL NETWORKS AND SAMPLING THEORY
PRELIMINARIES

This section surveys some preliminaries of neural networks
and sampling theory. Readers that are familiar with these
topics may skip to the next section.

Any neural network training relies on a given input dataset
{(xi, yi)}n−1i=0 with n pairs of data sample xi and label yi. In
general, the input space of a neural network is limited, i.e., x is
sampled just from a specific interval of interest (for example,
in images the pixel values are only in the range [0, 255]).
Without loss of generality, we will assume for the simplicity
of the presentation that x ∈ [−π, π]. In this case, we can
arbitrarily define the values of f(x) outside this interval (we
do not sample the function there and therefore it does not affect
the data generation and the network trained). We specifically
select a periodic continuation of f such that f(x) = f(x+2π).

Since we assume that f is bandlimited, then f must be also
smooth and thus this assumption implies that f(−π) = f(π).
Notice that this assumption does not limit us in any way as
if this is not the case, there are various ways to mitigate this
issue. For example, in the case that f(x) − f(x + 2π) is not
too large, we may extend the function a bit beyond x = 2π
in a smooth way such that it will remain band limited and
satisfy the periodicity assumption. Another popular alternative
is using a symmetric expansion of f (copying a mirrored
version of f in the interval [−π, π] to the interval [π, 3π],
which enforces having f(−π) = f(3π) due to the mirroring)
before applying the periodic extension. This just changes the
integral limits when calculating the Fourier coefficients of f
and requires replacing the DFT (which we use hereafter) with
DCT [19].

Since f is periodic, we may calculate its Fourier coefficients

ck =
1

(2π)d

∫
‖x‖∞≤π

f(x)e−jx
T kdx, (1)

where k ∈ Zd. If f is bandlimited (also known as trigonomet-
ric polynomial [20]) then ck = 0 if ∃i such that k[i] > K.
Thus,

f(x) =
∑

−K≤k[i]≤K

cke
jxT k. (2)

Note that we sum over all the combinations in which |k[i]| ≤
K.

Using the sampling theorem for bandlimited periodic sig-
nals, we may recover f(x) using just n ≥ N , (2K + 1)d

samples {f(xi)}n−1i=0 . For completeness, and as it will help us
later in the derivations, we briefly describe here this result.

Uniform sampling. We start with reconstruction using
uniform sampling. Assume that our sample points are on
the grid [ 2πi1

2K+1 ,
2πi2
2K+1 , . . . ,

2πid
2K+1 ], where il = 0, . . . , 2K for

l = 1, . . . , d. In the one dimensional case (d = 1), we have

f(xi) =

K∑
k=−K

cke
j2πki
2K+1 . (3)

Denoting by c the vector that contains the Fourier coefficients
in it and by y the vector that contains the values of f(xi), we
may rewrite (3) as (see [21])

y = F ∗c, (4)

where F ∈ CN×N is the DFT matrix, whose columns (in 1D)
are of the form {ej2πk

i
2K+1 }Kk=−K , and F ∗ is its conjugate

transpose, which is also its inverse (up to a scale factor 1/N )
because the rows of F are orthogonal to each other. Notice that
the same holds true for the multi-dimensional case (d > 1) and
then F is simply the d-dimensional DFT (in this case, we can
also cast c in a vector representation). Having this relationship,
we can recover the vector c, and thus the whole function f ,
from y by computing c = 1

N Fy.
Oversampling. Notice that if the number of measurements

that we have are n > N , then we still have the relationship in
(4) but in this case F ∈ CN×n is a DFT (tight) frame, whose
columns are of the form {ej2πk in }Kk=−K (in 1d). Since the
rows of F are orthogonal in this case as well (also for d > 1),
we still have that 1

nFF
∗ = I and thus we can reconstruct the

function f using c = 1
nFy as before.

Notice that due to the redundancy that we have in the
measurements, we may use other DFT operators to reconstruct
c. In particular, for any Ñ and n ≥ Ñ ≥ (2K + 1)d, we
can simply pad c with zeros, which yields the relationship
y = F ∗c for the DFT frame F ∈ CÑ×n (which is the standard
DFT transform if n = Ñ ). As before, we can reconstruct the
Fourier coefficients by c = 1

nFy. We abuse notation here and
elsewhere denoting by c also the padded representation. The
use will be clear from the context.

Non-uniform sampling. In many cases, we get just a
random (non-uniform) set of samples of the space. In this
case, the set of input points {xi}n−1i=0 do not lie on the grid
but are randomly spread in [−π, π]d. The sampled points obey

f(xi) =

K∑
k=−K

cke
kT xi . (5)

Writing (5) in a matrix form yields f = Dc, where the rows of
D are {ejkxi}Kk=−K (in the 1D case). Notice that D ∈ Cn×N
is very similar to the DFT inverse transform (F ∗) but with
the difference that its rows correspond to random frequencies
unlike F ∗ whose rows have equi-spaced frequencies (that leads
to the orthogonality property). Notice that also here we may
pad c with zeros and thus have D ∈ Cn×Ñ in a similar way
to the oversampling case. If Ñ = 2K̃ + 1 for some K̃ ≥ K
then the rows of D are {ejkxi}K̃

k=−K̃ (in the 1D case).
If D has a full column rank (which is the case of many

random sampling schemes [22], [23], [21]), i.e., invertible,
then we may again reconstruct the function f by computing
c = D†y, where D† = (D∗D)−1D∗ is the pseudo-inverse
of D. Although we can get perfect reconstruction also with
random sampling, its disadvantage is the noisy case, where we
get noise amplification that depends on the ratio κ between
the largest and smallest non-zero singular value of D (the
condition number of D∗D). This ratio is dependent also on
the ratio between n and Ñ [24], [25]. We use it hereafter
to provide error bounds for neural networks with randomly
sampled training data.



3

IV. THE FUNCTION SPACE OF BOUNDED FINITE NEURAL
NETWORKS

The work in [1] proved that any function φ represented by a
two layer overparameterized (with number of parameters going
to infinity) ReLU network with univariate input and output has
a bounded total variation in their first derivative as the bound
on the network norm imposes a constraint on

max

(∫
x

φ′′(x)dx, φ′(∞) + φ′(−∞)

)
. (6)

They have shown that this implies a spline interpolation (of
at least order one, i.e., linear) between the training data,
which the network overfitted (which is possible due to its
overparameterization). The work in [2] have extended their
results showing that the network performs a second order
(cubic) spline interpolation between the data points under
some assumption on the initial weights and the optimization
process. The result of [1] have been extended in [3] to the
case of multi-dimensional input. They have shown that in
this case, the functions represented by the network have a
bounded R-norm, which is related to the Radon transform of
the represented function.

Notice that the existing works [1], [2], [3] assume shallow
networks with infinite width. We show here that under the
assumption that the input domain is bounded (as is the com-
mon case with neural networks training), then neural networks
with bounded norm approximate functions that have a bounded
derivative and thus also total variation in the second derivative.
Our proof technique much simpler than the ones presented in
the earlier works.

Denote by σi the non-linearity in the network at the ith
layer and by Wi and bi the weights and biases there. Then,
we may write a feed-forward network with L layers as

φ(x) = σL(bL +WLσL−1(· · ·σ2(b2 +W2σ1(b1 +W1x)).

If we denote by zi the output of the ith layer, then we can
write the above recursively as

zi = σi(bi +Wizi−1), (7)

where z0 = x and zL = φ(x). For such a network we prove
the following proposition, which is an extension of the result
in [16]

We rely on a result from [16] that shows the relationship∥∥∥dφdx∥∥∥ ≤ ∏i ‖Wi‖F . Yet, that work presents this result only
for networks with ReLU, Sigmoid or hyperbolic tangent as
non-linearity and without biases. The following proposition
presents this result also for networks with biases and other
non-expansive activation functions.

Proposition 1: Let φ(x) be a feed-forward network with an
input x, non-expansive non-linear function σi and weights and
biases {Wi}Li=1 and {bi}Li=1. Then, we have∥∥∥∥dφdx

∥∥∥∥ ≤ L∏
i=1

‖Wi‖F . (8)

Proof. For calculating the Jacobian dφ
dx , we may use the

chain rule (as used in back-propagation), getting
dφ

dx
=

dφ

dzL−1

dzL−1
dzL−2

· · · dz2
dz1

dz1
dx

. (9)

Thus, using matrix norm inequalities we have∥∥∥∥dφdx
∥∥∥∥ =

∥∥∥∥∥
L∏
i=1

dzi
dzi−1

∥∥∥∥∥ ≤
L∏
i=1

∥∥∥∥ dzi
dzi−1

∥∥∥∥ . (10)

Now, notice that

dzi
dzi−1

= diag(σ′i(bi +Wizi−1))WT
i . (11)

Since the spectral norm of the diagonal matrix diag(σ′i(bi +
Wizi−1)) is its maximal value and as this value is smaller or
equal to 1 (as we assume σ is non-expansive), we have that∥∥∥∥ dzi

dzi−1

∥∥∥∥ =
∥∥diag(σ′i(bi +Wizi−1))WT

i

∥∥ ≤ ‖Wi‖ . (12)

Plugging this inequality in (10) and then using the known
relationship between the spectral and the Frobenius norms,
we get the desired result. �

To get a bound on the total variation of the second derivative
we make the following simple observation: The discontinuities
in the function approximated by the network are only due to
the non-linear function in the network. Since the first derivative
is bounded the “jumps” that occur in it are finite. Since we are
dealing with a finite domain and a finite network, the number
of such discontinuities is finite and therefore the integral over
the second derivative is also finite (also known as the total
variation of the first derivative).

Notice that in the case of infinite network and infinite
domain, we cannot make the above assumptions and therefore
a more sophisticated approach as the one in [1] is required to
give a bound on the total variation of the first derivative. Yet,
their work does not apply to the finite network case as does
our result here. Notice that for shallow networks, which is the
case studied in [1], [2], [3], the number of discontinuities in
the network grows linearly with the width. In the deeper case,
it grows faster (see analysis in [12], [26]) but is still bounded.

This provides us with the following corollary for finite
neural networks with a univariate output.

Corollary 2: Let φ be a finite multi-layer neural network
with non-expansive non-linearities that have a finite amount
of discontinuities in their first derivative. Assume the training
data is in the interval [−π, π]d. Then the total variation of
the derivative of this function,

∫
x∈[−π,π]d ∆φ(x)dx, is finite,

where ∆φ(x) = ∇2φ(x) is the Laplacian of φ(x).
Proof. Using Proposition 1 we have that all the partial deriva-
tives of φ(x) are bounded in the domain [−π, π]d. Since
the network is finite and the discontinuities in the network
derivative emerges from the non-linearities that have a finite
amount of discontinuities in their first derivative, we have
a finite amount of “jumps” in the interval [−π, π] and all
of them. The integral over the second derivative can be
bounded by the difference between the largest and smallest
first derivative of φ times the interval size plus the sum of the
sizes of the jumps (as each is a delta function in the second
derivative). As the first derivative and the amount of “jumps”
are bounded, we have that

∫
x∈[−π,π]d ∇

2φ(x)dx is finite. �
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V. SAMPLING THEORY BASED ERROR BOUNDS

We turn now to use the above findings to prove that a
neural network with bounded norms can recover band-limited
functions with very high precision both with uniform and
non-uniform sampling, where the latter is the more common
case when getting a training data for a neural network. The
underlying assumption in the analysis here is that the labels
yi are generated by a band limited function f(x). We focus
on univariate functions f : R→ R.

A periodic representation of the neural network function

Denote by φ̃n : R → R a function represented by a
neural network that has bounded weights and is trained with
n training samples. While this function is defined for all
R, for our data we are only interested in the output of the
network in the domain [−π, π. Therefore, for analyzing the
network estimation error compared to the function f(x) in
this domain, we can change φ̃n arbitrarily as we wish outside
of this domain.

To be able to calculate a Fourier series, we define the
function φn, which is equal to φ̃n in the domain [−π, π] and
is periodic outside of it with a period 2π. Clearly, also in
this case we may have that φ̃n(x+ 2π) 6= φ̃n(x). Yet, as we
discussed in the preliminaries section, this can be leveraged,
for example, by using a symmetric extension and then the
same analysis that we present below will remain the same but
with a DCT replacing the DFT used in the analysis. Since both
are orthogonal, the derived results remain the same. Thus, for
simplicity we just assume a regular periodic extension.

Given that φn is periodic we may calculate its Fourier series

φn(x) =
∑
k∈Z

ζke
jxk, (13)

where ζk is calculated as in (1) (with φn instead of f ).
Now, assume that the network has overfitted the data, i.e.,

f(xi) = φn(xi), then if φn is band-limited as f , then we get
from sampling theory that f = φn. In the case of uniform
sampling, if the network function φn was exactly a spline, we
could have used the result in [27] to calculate the network
error as a function of n. Yet, φn is not guaranteed to be band-
limited and as shown in [1], [2], the connection between the
points may be beyond ”linear”. Figure 1 provides an example
of a trained network output, where we get different types of
interpolations between the training points that are generated
from a band-limited function. Therefore a more general error
analysis is required.

To this end, we take the following strategy. First we show
that since the network approximates smooth functions, then
its spectrum decay fast. Then we use this to bound the error
of the network for data that is generated from bandlimited
mappings.

Spectral decay rate of networks with bounded weights

We introduce the following lemma that provide a bound on
the decay rate of finite neural networks with bounded weights.

Lemma 3: Let φn(x) be a finite multi-layer neural network
with non-expansive non-linearities that have a finite amount

Fig. 1. Approximation of a band-limited function f(x) using a neural network
φn trained using only 16 training examples (y).

of discontinuities in their first derivative. Assume the training
data is in the interval [−π, π]. Then the Fourier coefficients of
φn(x), obeys

ζk = O(|k|−2). (14)

Proof. According to Corollary 2, if the network has bounded
weights then φn(x) has a finite total variation of the derivative
of this function, i.e.,

∫
x∈[−π,π] φ

′′
n(x)dx. Clearly, in this case

also φ̃n(x) = φ(x)I[−π,π] has a finite total variation. The
indicator function I[−π,π] is one inside the domain [−π, π]
and zero outside of it.

Notice that φn(x)I[−π,π]d ∈ L1. One way to see this is
using the fact that φn(x) is Liphschitz (as it has a bounded
first derivative as shown in Lemma 1) and [−π, π] is a
finite domain. Thus, using a standard known result, the finite
total variation in the first derivative implies that the Fourier
transform φ̂n(w) of φn(x)I[−π,π]d obeys φ̂n(w) = O(|w|−2).
Using the known relationship that the Fourier coefficients of
φn (ζk) are equal (up to a constant) to the “sampled Fourier
transform” φ̂n(k) yields the desired result. �

Having the above decay rate for the Fourier coefficients of
φn(x), we turn to bound the error between φn(x) and f(x).
We start with the case of uniform sampling and then move
to the case of non-uniform sampling. We present both results
for the univariate case. One may extend them to the multi-
dimensional input case using a similar technique. We defer
this to a future work.

Network error with uniform univariate samples

The next theorem shows that the network error in the
uniform sampling case decreases as a function of 1

n3 .
Theorem 4: If a univariate network has bounded weights,

the training data of size n ≥ 2K + 1 is fitted by the network
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and it is uniformly sampled from a band-limited function with
2K + 1 non-zero Fourier coefficients, then we have

‖f(x)− φn(x)‖2L2
[−π,π]

= (15)∫ π

x=−π
(f(x)− φn(x))2dx = O(1/n3),

i.e., the error of the network scales as O(1/n3)
The proof of this theorem is a special case of the one of

Theorem 5 for non-uniform sampling, which is presented next.

Network error with random univariate samples

Having the result for the uniform sampling case, we move
to study the random sampling case. Analyzing this case is
more important as it resembles in a closer way the case of
real data, where we get labels for randomly sampled inputs.
We show in this case the rate of convergence is of the order
of 1

Ñ3
(Ñ ≤ n), where we assume that the random sampling

pattern generates an operator D ∈ Cn×Ñ that is invertible with
a condition number κ. Notice that this enables us to tradeoff
the network error decay rate and the condition number of D. If
Ñ = n we get the fastest decay rate but the condition number
is very bad. Reducing Ñ improves the condition number but
slows down the decay rate. We discuss the case, which is
equivalent to xi U [−π, π] (i.e., sampling from a uniform
distribution in the domain [−π, π]), after the proof of the
theorem. We claim that in that random sampling case, the
network error scales as 1

n3 , like in the deterministic uniform
sampling case.

Theorem 5: If a univariate network has bounded weights,
the training data (xi, yi) of size n ≥ 2K + 1 is randomly
sampled from a band-limited function f with 2K+1 non-zero
Fourier coefficients (i.e., yi = f(xi)), an operator D ∈ Cn×Ñ
(Ñ ≤ n) that corresponds to the sampling pattern is invertible
with a condition number κ, and the network φn fits the data,
then with high probability

‖f(x)− φn(x)‖2L2
[−π,π]

= O(κ2/Ñ3). (16)

Proof. Let Ñ = 2K̃ + 1 for K̃ ∈ Z.1 From the Parseval
identity and the fact that f is band-limited, we have

‖f(x)− φn(x)‖2L2
[−π,π]

=

∞∑
k=−∞

|ck − ζk|2 (17)

=
∑
k≤K̃

|ck − ζk|2 +
∑
|k|>K̃

|ζk|2 .

To bound the network error, we need to bound the two terms
in the rhs (right hand side) of the (17).

We start with the second term. Using Lemma 3, we have
that |ζk| ≤ a/ |k|2 for some constant a. Thus,∑
|k|>K̃

|ζk|2 ≤ a
∑
|k|>K̃

1

|k|4
= O

(
1

K̃3

)
= O

(
1

Ñ3

)
,(18)

1This assumption is used just for the simplicity of the presentation to
perform a symmetric expansion of c. If n is even we can just perform a
non-symmetric expansion.

where the first equality follows from the decay rate of the sum∑
|k|>K̃

1
|k|4 . Plugging (18) in (17) leads to

‖f(x)− φn(x)‖2L2
[−π,π]

≤
∑
k≤K̃

|ck − ζk|2 +O

(
1

Ñ3

)
. (19)

Turning to bound the first term in the rhs of (19), notice that
from the assumption that the network fitted the training data,
we have f(xi) = φn(xi) for 1 ≤ i ≤ n. Using the Fourier
series expansion of φn(x), we have that

φn(xi) =
∑
k∈Z

ζke
jkxi =

∑
|k|≤K̃

ζke
jkxi +

∑
|k|>K̃

ζke
jkxi . (20)

Denote by y the vector whose ith entry is φn(xi), D the
operator that contains {ejkxi}Kk=−K in its rows, ζ the vector
containing the coefficients ζk, k ≤ K̃, and y\K̃ ∈ Cn the
vector whose ith entry is equal to

∑
|k|>K̃ ζke

jkxi . With this
notation, we may write (20) in a vector form

y = Dζ + y\K̃ , (21)

Denote by ζl the vector that contains the set of coefficients
ζ−K̃+lÑ , . . . , ζK̃+lÑ . Notice that each coefficient in ζl is
multiplied in y\K̃ by the same complex exponent as in the
multiplication between D and ζ but with a factor ejlÑxi . Thus,
by denoting Ll = diag

(
ejÑlx1 , . . . , ejÑlxn

)
, the diagonal

matrix that contains these exponent factors, we may write
y\K̃ =

∑
l 6=0 LlDζ

l. Using the assumption that D is invertible
and y = Dc, we get from (21) that

c = ζ +
∑
l 6=0

D†LlDζ
l. (22)

Notice that ||c − ζ||22 =
∑
k≤K̃ |ck − ζk|

2, which is exactly
the term we want to bound in (19). From (22), we have

‖c− ζ‖22 =

∥∥∥∥∥∥
∑
l 6=0

D†LlDζ
l

∥∥∥∥∥∥
2

2

(23)

=
∑
l 6=0

||D†LlDζl||22 +
∑
q 6=l,0

∑
l 6=0

(D†LlDζ
l)∗D†LlDζ

q

≤
∑
l 6=0

||D†LlDζl||22 +
∑
q 6=l,0

∑
l 6=0

∥∥D†LlDζl∥∥ ∥∥D†LlDζq∥∥2
≤ κ2

∑
l 6=0

||ζl||22 + κ2
∑
q 6=l,0

∑
l 6=0

∥∥ζl∥∥ ‖ζq‖2 ,
where we use the Cauchy Schwartz inequality in the second
step, and matrix norm inequalities in the last step, namely,∥∥D†LlDζl∥∥2 ≤ ∥∥D†∥∥2 ‖Ll‖2 ‖D‖2 ∥∥ζl∥∥2 (24)

with the fact that
∥∥D†∥∥

2
= 1/σmin(D), ‖D‖2 = σmax(D),

‖Ll‖2 = 1 and κ = σmax(D)/σmin(D).
We turn to bound the terms at the rhs of (23). For the

first, we have that
∑
l 6=0 ||ζl||22 = O

(
1
Ñ3

)
as in (18). For the

second term, from Lemma 3, we have that
∥∥ζl∥∥

2
and ‖ζq‖2

behave as
√

n
(nl)4 = 1√

nnl2
and 1√

nnq2
respectively. Thus,∑

q 6=l,0

∑
l 6=0

∥∥ζl∥∥
2
‖ζq‖2 ≤

1

n3

∑
q 6=0

1

q2

∑
l 6=q

1

l2
= O

(
1

n3

)
, (25)
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where in the last equality we use the fact that
∑
l 6=q

1
l2 =

constant and thus
∑
q 6=0

1
q2

∑
l 6=q

1
l2 = constant as well.

Thus, we get from (19) that ‖c− ζ‖22 = O(κ2/Ñ3). (23).
Combining this with (19) leads to the desired result. �

One may inquire what can be said on κ in Theorem 5.
To this end, we employ the empirical analysis performed in
[25]. In that work, it was conjectured that the eigenvalues of
a randomly subsampled frame obey a Manova distribution. To
employ their result in our case, we may treat D as a matrix
sampled from a significantly larger Fourier basis. In their work,
they have two parameters. The first is γ, which is the fraction
between the large basis and the size of the rows, namely Ñ
in our case. This selection of subset of the rows creates a
frame (the selection can be deterministic in this step of the
selection as is our case). We set γ = εÑ , where ε is a very
small number as the large basis should represent the whole
space we are sampling from and we scale ε with Ñ as we
get closer to the whole space when we add more samples.
The second parameter is β = n

Ñ
, which is the redundancy

factor in D. Given these two parameters, the support of the
MANOVA distribution that characterize the singular values of
D is [r−, r+], where

r± =
(√

β(1− γ)±
√

1− βγ
)2

(26)

=

(√
n

Ñ
− εn±

√
1− εn

)2

.

Note that r−/r+ provides a bound to the condition number
(as the minimal/maximal singular value may be greater/smaller
than r−/r+). Assuming εn is negligible, we have that

κ ≤ (
√
β + 1)2

(
√
β − 1)2

. (27)

Notice that in Theorem 5, the ratio β of D is a free parameter
that we may adjust to optimize the bound. This leads us to
the following conjecture

Conjecture 6: If a univariate network has bounded weights,
the training data (xi, yi) of size n ≥ 2K + 1 is randomly
sampled from a band-limited function f with 2K + 1 non-
zero Fourier coefficients (i.e., yi = f(xi)), xi ∼ U [−π, π],
and the network φn fits the data, then

‖f(x)− φn(x)‖2L2
[−π,π]

= O(1/n3). (28)

It is conjecture as it relies on empirical analysis [25] (with
no rigorous proof) and on our assumptions above. If all of
these are correct, then we get this result by simply plugging
(27) and Ñ = n

β in the bound of Theorem 5, which yields

‖f(x)− φn(x)‖2L2
[−π,π]

= O

(
(
√
β + 1)4β3

(
√
β − 1)4

/n3
)
. (29)

Since β is an arbitrary constant, the nominator can be also
considered as such and thus we get that the error scales as
O(1/n3). Notice that this bound is not tight and thus we
cannot use it to approximate the ratio between the number
of samples required in the deterministic and random cases
in order to get the same error. Next we present a numerical
simulation that demonstrates that this ratio is not so high and

Fig. 2. Network error as a function of the number of training samples n. Top:
Training with random samples. Bottom: Training with uniform (equispaced)
samples. Notice that in both cases, the network error scales as 1/n3.

that both uniform deterministic and random sampling indeed
obey a decay rate of 1/n3 for band-limited signals.

Empirical demonstration

We have generated a bandlimited signal with 11 Fourier
coefficients (K = 5). The signal is presented in Figure 1.
We sampled both uniformly (equispaced) and randomly the
function f , generating n pairs of (xi, yi = f(xi)), where
n ∈ {11, 16, 24, 32, 40, 48, 56, 64}. Then we trained a neural
network with two hidden layers of size 1000. We trained the
network with weight decay and a SGD with momentum (with
parameter 0.5). Once the network converged, we calculated
its error compared to the generating function. Figure 2 shows
that in both cases the error scales as 1/n3. The very larger
error at n = 11 in the random case may be explained by the
fact that in this case, we can just have β = 1 and then the
condition number is relatively large, which increases the error.
An additional experiment appears in the appendix.

Notice that in the random sampling case, we need roughly
twice the number of points to get to the same error as in the
equispaced sampling case. This shows the great advantage of
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the latter. This observation may serve as a motivation for the
farthest point sampling technique used in active learning when
searching for new examples to annotate.

VI. CONCLUSION

This work used sampling theory tools to analyze the error of
neural networks. We showed that when the input data is band-
limited, the network error scales as O(1/n3) in the univariate
case both with uniformly sampled and randomly sampled
data. To the best of our knowledge, no such decay rate was
demonstrated in the literature of neural network generalization
(see for example the survey [28]). As we assume that the
network fits the data, the total network error studied in this
work is the same as its generalization error.

While this work provides a generalization error of over-
parameterized networks with bounded weights, our analysis
does not take into account the implicit bias on the margin of
these networks implied by the optimization [29], [30], which
is also important for network generalization [16], [17]. We
believe that a combination of these tools may further improve
the understanding of neural networks.

Notice that while the discussion in this paper was on band-
limited functions, our results may be easily extended to other
types of functions such as ones that have compact support
in wavelets or splines. In this case, one may use tools from
generalized sampling theory [22], [31], [32], [33], [34] to
represent the signal in a similar way as we have done in (4)
and then perform a similar analysis to the one performed in
this paper.
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APPENDIX A
AN ADDITIONAL EMPIRICAL EXPERIMENT

We generate a bandlimited signal with 9 Fourier coef-
ficients (K = 4). The signal is presented in Figure 3.

https://openreview.net/forum?id=SJeLIgBKPS
https://openreview.net/forum?id=SJeLIgBKPS
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Fig. 3. Approximation of a band-limited (K = 4) function f(x) using a
network φn trained using only 16 training examples (y).

Fig. 4. Network error as a function of the number of training samples n for
K = 4. Top: Training with random samples. Bottom: Training with uniform
(equispaced) samples. Notice that in both cases, the network error scales as
1/n3.

We sampled both uniformly (equispaced) and randomly the
function f , generating n pairs of (xi, yi = f(xi)), where
n ∈ {9, 16, 24, 32, 40, 48, 56, 64}. Then we trained a neural
network with two hidden layers of size 1000. We trained the
network with weight decay and a SGD with momentum (with
parameter 0.5). Once the network converged, we calculated its
error compared to the generating function. Figure 4 shows that
in both cases the error scales as 1/n3. As before, the larger
error at n = 9 in the random case may be explained by the
fact that in this case, we can just have β = 1 and then the
condition number is relatively large, which increases the error.

Notice that also here, in the case of a small number
of samples, we get better error with deterministic uniform
sampling compared to random sampling.
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