6 SINGLE-ECHELON SYSTEMS:
INTEGRATION - OPTIMALITY

6.1 Joint optimization of order quantity and reorder
point

In practice it is most common to determine the batch quantity from a deter-
ministic model. The stochastic demand is then replaced by its mean. In
Chapter 4 we have considered different methods for determination of batch
quantities under the assumption of deterministic demand. Stochastic varia-
tions in the demand, and possibly in the lead-time, are then only taken into
account when determining the reorder point. As discussed in Chapter 4 this
procedure is, in general, an adequate approximation. In Chapter 5 we have
described various techniques for determining the reorder point for a given
batch quantity.

It is also possible, though, to optimize the batch quantity and the reorder
point jointly in a stochastic model. In this section we shall consider such
techniques.

6.1.1 Discrete demand

Assume discrete compound Poisson demand. Each customer demands an
integral number of units. As before, we also assume that not all demands are
multiples of some integer larger than one. The average demand per unit of
time is denoted . The lead-time L is constant. The stochastic lead-time de-
mand is denoted D(L) and its mean u" = ul.
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Furthermore, we consider a holding cost 4 per unit and time unit, a short-
age cost b; per unit and time unit, and an ordering or setup cost 4.

6.1.1.1 (R, Q) policy

We shall first deal with a continuous review (R, Q) policy and the joint
optimization of the integers R and Q). A periodic review model can be han-
dled m essentially the same way. Sce also Federgruen and Zheng (1992).

Recall the following standard argument from Section 5.3.2. Let IP(¢) be
the inventory position at time ¢. Consider then the time ¢ + L. At that time,
everything that was on order at time ¢ has been delivered. Orders that have
been triggered in the interval (¢, ¢ + L] have not reached the inventory due to
the lead-time. Consequently we have

IL(t + L) = IP(t) - D(L). (6.1)

Let us initially consider the special case of an (S - 1, S) policy with § = £,
i.e, R =k-1and Q = 1. This means that the inventory position is % at all
times. Using (6.1) the inventory level distribution can then be obtained as

PUL=j)=P(D(L)=k-j), Jj=k (6.2)

Let g(k) be the average holding and shortage costs per time unit. We have
from (5.56)

k
g(k)=—b E(IL) + (h + b)) E(L" )= by (k — 1) + (h + b)) _ZIJ'P(IL =J)
J=
(6.3)

The results in Section 5.9.1 imply that g(k) is a convex function of the in-
ventory position k. Furthermore g(k) — o as |k‘ — o,

Let us now go back to the (R, Q) policy. Recall that the inventory posi-
tion is uniform on [R + 1, R + Q]. Consequently the total average costs per
time unit can be expressed as

R+(Q
C(R,Q):i;ﬁ+i S g(k) (64)
k=R+!

In (6.4) we obtain the holding and backorder costs by averaging over the in-
ventory position. We assume that each batch incurs an ordering cost 4, 1.e.,
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if an order for two batches is triggered, the associated ordering cost is 24.
Our objective is to optimize C(R, Q) with respect to both R and Q.
Let us now define C(Q) as

C(Q) = miniC(R, O)} (6.5)

It is evident that C(1) = Ay + min, {g(k)}, i.e., if the sum in (6.4) includes a
single value of &, we choose a k that gives the minimum cost. We denote an
optimal £, i.e., a value of k that minimizes g(k) by k. A corresponding opti-
mal reorder point for Q= 1is R'(1) = k- 1, i.c., if we use a single value of ,
we choose the best one. Consider now Q = 2, which means that we use two
values of k. Due to the convexity of g(k), the second best &£ must be cither & -
1 or k'+ 1. Clearly, we should use the better of these two values. From (6.4)
it is therefore evident that it is optimal to choose R'(2) =R"(1) - 1 if g(R'(1))
< g(R'(1) + 2), and R'(2) = R'(1) otherwise. We obtain C(2) = A2 +
[min{g(R'(1)) , gR'(1) + 2)} + g(R(1) + 1)]/2, or equivalently, C(2) =
C(1)/2 + min{ g(R'(1)), g(R(1) + 2)}/2. More generally we have

RIQ+D)=R"(O) -1 if g(RT(Q)<g(R(Q)+0+1),

(6.6)
R (O+1)=R " (Q) otherwise,
and
. * * 1
CE+1=C@ 52+ mintsth ©@.5® @+ 00|
(6.7)

It 1s evident from (6.7) that C(Q + 1) = C(Q) if and only if min{g(R(Q),
g(R(Q) + O + 1)} = C(Q). Furthermore, it is obvious that min{g(R"(Q),
g(R(Q) + O + 1)} is increasing with Q. Let Q" be the smallest Q such that
C(Q + 1) = C(Q). 1t follows from (6.7) that C(Q) = C(Q") for any 0> Q"
Consequently, Q" and R'(Q") provide the optimal solution.

To summarize, it is very easy to determine the optimal solution by ap-
plying (6.6) and (6.7) until the costs increase.



132 INVENTORY CONTROL

6.1.1.2 (s, S) policy

Let us now instead consider the optimization of an (s, S) policy. Other-
wise the assumptions are exactly the same as above. When using an (s, 5)
policy the inventory position is no longer uniformly distributed. This makes
the optimization more complex. Zheng and Federgruen (1991), however,
have developed a very efficient optimization procedure. We shall here only
describe the procedure and refer to their paper for proofs and more details.

In Section 5.11 we defined and determined the probabilities

m; = probability to reach /P = during an order cycle (s +1 < j <39).

. . S
The average total number of customers during an order cycle is ), s

Let A be the customer arrival rate. The average length of an order cycle is
consequently Zj;s .1m; /4. The steady state distribution of the inventory po-

sition 1s obtained as
s
PUP=ky=my/ Y m;, k=s+l,5+2,..,S. (6.8)
j=5+1

See Section 5.11 for more details. Given these probabilities we can deter-
mine the average costs per time unit as

A4 S
C(s,8) =—s—+ D PUP=k)-g(k). (6.9)
ij k=s5+1
J=s+]

We are now ready to describe the optimization procedure.

1. In the first step we set S° =&, i.e., a value of & that minimizes g(k). Next,
consider s =8 - 1,5 =5 -2, ..., until C(s, S") < g(s). When this occurs,
set s~ = s and the initial best solution as C" = C(s", §). Set S=5".

2. SetS=S5+1.Ifg(S)> C", 5" and §" provide the optimal solution with the
costs C', and the algorithm stops.

3. It is possible to show that the considered S will improve the solution if,
and only if, C(s", S) < C". In that case set S = S. Otherwise go to 2.
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4. To find the best s corresponding to S, it is only necessary to consider s =

s, s +1,.. Thenew s is obtained as the smallest value of s giving C(s,
§) > g(s + 1). Update C" = C(s", §7) and go to 2.

6.1.2 An iterative technique

Now consider normally distributed demand instead, and add ordering costs
to the (R, ) model with backorder cost per unit and unit time that we deait
with in Section 5.9.2. The lead-time demand has mean g and standard de-
viation o’. The mean per unit of time is .

By adding the average ordering costs per time unit to the cost expression
in (5.65) we have

C(R,Q) = h(R+Q/12 - u)+ (h+5)Z { (R f‘) H[R+Q,‘“'H+A“.
Q o o 0

(6.10)
Recall the definitions of H(x) and G(x). See Appendix 2.

Our objective is to optimize C(R, () with respect to R and Q. As
pointed out in Section 5.9.2, we cannot replace the backorder costs by the fill
rate (5.67) when carrying out a joint optimization of R and (.

We shall demonstrate how the optimization can be carried out by a sim-
ple iterative procedure. It can be shown that this procedure will always con-
verge to the optimal solution (Rosling, 2002b).

The necessary conditions 0C/0Q = 6C/0R = 0 are also sufficient and

will guarantee the unique optimal solution.
We obtain 8C/0R as in (5.66)

aC R+Q-pu R-u
éﬁ_hwt(h bl)E[ (—O_,—j G[TH (6.11)

For a given Q we can use (6.11) to determine the corresponding reorder
point R giving 0C/0R= 0. The resulting R decreases with Q. We can also
get 0C/0Q from (6.10) as
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(6.12)

We shall now describe the iterative procedure for finding the optimal so-
lution satisfying 6C /00 = 6C /R = 0.

We start by determining the batch quantity according to the classical eco-
nomic order quantity model

= 24u/h . (6.13)

Next we determine the corresponding reorder point R® from (6.11) and the
condition 6C/8R =0. In the following step we get a new batch quantity Q'
from

o {L;Mz(hzbl)a,z[,{[fe —'HJ_H[R -0 —u}

(6.14)

After that we determine the reorder point R' corresponding to Q' from (6.11)
and the condition 8C /3R =0. Given Q' and R', we obtain O and R” in the
same way, etc.

It can be shown that the batch quantity increases in each step, Q' = Q'
while the reorder point decreases, R’ < R’ The costs decrease in each step.
Let C” be the optimal cost. It is possible to show that C(R’, 9")-C" < h(Q""
—QY, i.e., the remaining gap can be bounded.
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Example 6.1 Let A =100, 7 = 2, and b, = 20. The demand per time unit is
normally distributed with g = 50 and o= 20. The lead-time 1s L = 4. We ob-
tain g'= ul=200 and o'= oL"? = 40.

The results from the iterations when applying the described procedure are
shown in Table 6.1. We can see that the costs converge very rapidly. The
changes in batch quantity and reorder point as compared to the initial solu-
tion are significant. Still the total cost reduction is only about 2.5 percent.

Table 6.1 Results from the iterations for the data in Example 6.1.
_

Iteration i 0 1 2 3 4 5

Order quantity Qi 70.71 8791  93.08 9459 9503 9515
Reorder point R’ 22476 219.60 218.16 217.75 217.63 217.60
Costs C' 23201 226,63 22624 22621 22620 22620

Similar procedures for models with other types of costs can be designed
in the same way. We could, for example, have used a shortage cost per unit
as in Section 5.10. A corresponding procedure for a model with lost sales is
given in Rosling (2002a).

6.1.3 Fill rate constraint - a simple approach

We shall now consider a different and very simple technique from Axséter
(2004). This technique is especially suitable when optimizing R and Q under
a fill rate constraint, because it is in general only necessary to consider rela-
tively few different fill rates. The cost function is the same as in (6.10) ex-
cept for the backorder costs that are omitted

12 ’ ’
C:h(R+Q/2—y’)+hGQ {H[R_,“)—H[R‘LQ_“}}A“.

o o' Q
(6.15)
The fill rate is according to (5.52) obtained as

S, =1~ -‘é— [G[R—"”—j - G(wﬂ . (6.16)

o) a

It is possible to show that the considered problem has a pure optimal
strategy, 1.e., a single (R, Q) as its optimal solution, see Rosling (2002b).
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At a first glance the problem to optimize (6.15) under the constraint
(6.16) for a given fill rate S, depends on five parameters: A, 4, 1, 4, and o
However, it is easy to see that the problem does in fact depend on a single
parameter only. Define

c = Cltho),

g = Qlo,

r = (R-u) o,
E = Au(ha)).

Substituting in (6.15) and (6.16) we get the equivalent problem to minimize

c=r+ L () - H(+ )+ £, (6.17)
2 g q
under the constraint
S, :1—1[G(r)—G(r+q)]. (6.18)
q

Note that this version of the problem for a certain given S, depends on a sin-
gle problem parameter, £ > 0.

Axsiter (2004) suggests that q* 1s determined by linear interpolation of
tabulated values (or by using a polynomial approximation). (The tabulated
values can, for example, be obtained by using the technique in Section
6.1.2.) The corresponding # is then obtained from (6.18) in a second step. A
part of the required table is given in Table 6.2.

We are now ready to describe a simple way to solve the original problem
for a given fill rate S, and any problem parameters. We start by determining
E. Next we obtain the solution of the one-parameter problem from the table
and (6.18). Given the optimal solution ¢* and ', we get the solution of the
original problem as

* * !
Q =q o0,
R'=r"c'+u'.

Note that we can use the same table repeatedly for all items.
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Example 6.2 Let S, =09, 4 =100, h =2, u= 50, /=200, and & = 40, i.¢.,
except for the backorder cost, the same data as in Example 6.1. We get £
=Au/(h(c’)’) = 1.5625 and e = In (E) = 0.4463. Using the table values for e =
0.4 and e = 0.5 and interpolating linearly, we get ¢ = (2.5111(0.5 — 0.4463) +
2.6070(0.4463 — 0.4))/0.1 = 2.5555. Using (6.18) we get » = 0.3294. Finally
we obtain Q% =¢*c'=2.5555-40=10222 and R =ro'+u =
0.3294-40+200=213.18. The corresponding optimal solution is Q" =
102.20 and R* = 213.14.

@/ Table 6.2 g’ for different fill rates and values of e = In(E).

e\S  60% 76% 80% 85% 90% 95% 99%

-0.2 277398 24609  2.2323  2.1255 20165 1.8926  1.7371
-0.1  2.8408  2.5496 23127 22025 2.0004 19633  1.8047
0.0 29462 2.6421 23964 22828 2.1675 2.0373 1.8756
0.1 3.0562 27383 24836 23664 22478 21145 19498
0.2 31712  2.8387 25745 24536 23318  2.1953  2.0276
0.3 32914 29435 2.6694 25446 24194 22798  2.1092
0.4 34172 30529 27684 2.6397 25111 23683  2.1949
0.5 35490 3.1671 28718 2.7391  2.6070 24609 22848
0.6 3.6872 3.2867 29800 2.8430 27073 25580  2.3791
0.7 3.8322 34118 3.0931 29518 28124  2.6599 24783
0.8 39846 35430 3.2116 3.0658 2.9226 2.7668  2.5824

6.2 Optimality of ordering policies

In all the models that we have considered in this chapter it has been assumed
that the policy is either of the (R, Q) type or of the (s, §) type. A natural
question to ask is whether other, better policies exist. This is, in general, not
the case. In most situations one of these policies is indeed optimal for a sin-
gle-echelon inventory system with independent items.

In Section 6.2.1 we shall show that an (R, Q) policy is optimal when there
are no ordering costs but a given fixed batch quantity Q. After that we com-
ment on the optimality of (s, S) policies in Section 6.2.2.
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6.2.1. Optimality of (R, Q) policies when ordering in batches

Consider an inventory system with continuous review. Assume discrete
compound Poisson demand and that cach customer demands an integral
number of units. As before, we assume that not all demands are multiples of
some integer larger than one. The average demand per unit of time is de-
noted . The lead-time L is constant. The stochastic lead-time demand is de-
noted D(L) and its mean x" = L.

Furthermore, we consider a holding cost A per unit and time unit and a
shortage cost »; per unit and time unit. There are no ordering costs but all
orders must be multiples of a given batch quantity (. Orders can only be
triggered by customer demands. We shall show that an (R, Q) policy is opti-
mal under these assumptions. Qur proof follows essentially Chen (2000).

Obviously the inventory position must be an integer at all times. Assume
first that the inventory position is k£ at some arbitrary time ¢. Using (6.1) the
inventory level distribution at time ¢ + L can be obtained as

PUL=jy=P(D(Ly=k-j), Jj<k. (6.19)

Furthermore, (as in Section 6.1.1.1), let g(k) be the corresponding holding
and shortage cost rate at time 7 + L. We have

k
glk)=-b E(ILY + (h+ b)) E(IL" ) = ~by (k — 'y + (h+ by) _leP(ﬂl =J)
=
(6.20)

As shown in Section 5.9.1, g(k) is a convex function of the inventory posi-
tion k. Furthermore g(k) — oo as ‘k{ — o0,

Define now

B Q

20N =2.8y+ ),
Jj=1

where y is an integer. Clearly g(y) is aiso convex. Denote by R the finite
integer y that minimizes g(y).

Lemma 6.1 Let x and z be integers. For a given z, g(z + x(QJ) is convex 1n x.
Let x, be the unique integer so that R +1 <z + x,Q <R + Q. Then g(z + xQ) is
minimized with respect to x for x = x,.
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Proof It follows from the convexity of g(k) that g(z + x(Q) is convex in x.
Note that

gz+(x+DO)—g(z+xQ)=g(z+x0)-g(z+x0-1). (6.21)

Consider first any x < x,. This means that z + x@ < R. Obviously
g(z+x0)—g(z+xQ-1)<0. Similarly, x > x, implies z + xQ > R + ( and
g(z+xQ)—g(z+xQ-1)=20. It follows that g(z + x(J) is minimized with
respect to x for x = x,.

We are now ready to prove the following proposition.
Proposition 6.1 An (R, Q) policy is optimal.

Proof Consider any feasible policy. Let y, be the inventory position at time 7.
The cost rate at time ¢ + L is then g(y,). From Lemma 6.1 we know that g(y,)
> g(v,) where y,” = y, + nQ and » is the unique integer so that y, € {R + 1, R
+ 2, ..., R+ Q}. Consequently, the long-run average cost must be greater
than or equal to the long-run average value of g(y,"). To determine these
costs consider the stochastic process y,". Obviously y,” is constant between

the customer demands. Let D, be a demand at some time 7. Let y, be the

inventory position before the demand and y,” the inventory position after
the demand. Clearly

yf =y, — D, +mQ, (6.22)

where m is nonnegative. Furthermore, due to our construction we must also
have,

yiT =y -D, +m'Q, (6.23)

where m” is an integer. Given y,” and D, the value of m” is unique because
yvie{R+1,R+2,..,R+ Q} The demand sizes are independent, so the
different y,” can be seen as a Markov chain with the finite state space {R + 1,
R+2, ..., R+ Q}. The steady state distribution can be shown to be uniform.
(This can be done in essentially the same way as the proof of Proposition 5.1
in Section 5.3.1. We omit the details.)
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The long-run average value of g(y,’) is therefore g(R)/Q. This is a lower

bound on the long-run cost of any feasible policy. But this lower bound can
be achieved by using an (R, O) policy. Using an (R, Q) policy the inventory
position is also uniformon {R+ 1, R+ 2, ... , R + Q}. (We obtain the costs
by setting 4 = 0 in (6.4).) This completes the proof.

Proposition 6.1 can be generalized in different ways, for example to other
cost structures and to periodic review. In the special case when Q = 1 the (R,
() policy degenerates to an S policy with S = R + 1. This means that Propo-
sition 6.1 also demonstrates the optimality of an S policy in case of no or-
dering costs and no constraints concerning the batch quantities.

For problems with continuous or Poisson demand, (R, Q) policies and (s,
S) polictes are equivalent. For such problems (s, S) policies are consequently
also optimal.

6.2.2 Optimality of (s, S) policies

If we replace the fixed batch quantity in Section 6.2.1 by an ordering cost the
optimal policy is under quite general conditions of the (s, S) type. This is
more difficult to show, see e.g., Porteus (2002).

It is interesting to note, however, that (s, S) policies are not necessarily
optimal for problems with service constraints. Consider, for example, a
problem with discrete integral demand where s and S are integers. It may
very well happen that no (s, S) policy provides a certain given service level
exactly. The best (s, S) policy that satisfies the service constraint will conse-
quently give a slightly higher service than what is required. In such a situa-
tion it may be possible to reduce the costs by varying the policy over time so
that the average service level is exactly as prescribed.

Early optimality results were presented by Iglehart (1963) and Veinott
(1966). More recent results are provided by Zheng (1991), Rosling (2002b),
and Beyer and Scthi (1999).

6.3 Updating order quantities and reorder points in
practice

In Chapters 2 - 5 we have presented different techniques for forecasting and
determination of batch quantities and reorder points. We shall now illustrate
how these techniques can be mmplemented in an mventory control system.
We assume that we are dealing with a single-echelon system and independ-
ent items.
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The forecasts are normally updated with a certain periodicity. In general,
1t is most practical to also update reorder points and batch quantities at these
times, immediately after updating the forecasts. Let

tr = forecast period.

We can think of the forecast period as, for example, one month. The time
unit is not important. We can use one month as the time unit. In that case t=
1, but we can also express /r in days (i = 30), or in years ({z = 1/12). How-
ever, to avoid unnecessary errors it is recommended to use the same time
unit 1n all inventory control computations.

Typically the forecasts are updated either by exponential smoothing (Sec-
tion 2.4), or by exponential smoothing with trend (Section 2.5). It may also
be reasonable to use a seasonal method (Section 2.6) for a few items. The
forecasting method is, in general, chosen manually for each item. To specify
the forecasting method, we also need the smoothing parameters that are part
of the different forecasting methods. Usually it is practical to divide the
items into a number of inventory control groups and let the forecasting tech-
nique as well as various inventory control parameters, like holding cost rate
and service level, be identical for all items in the same group. See also
Chapter 11.

When using exponential smoothing we update the average demand &, at
the end of each forecast period. If instead we use exponential smoothing

with trend, we update both the average demand 4, and the trend l;f . In ei-

ther case we also update some error measure like MAD, (Section 2.10).
In case of exponential smoothing the average demand per unit of time z
1s obtained as

p=a, ltp. (6.24)

When using exponential smoothing with trend we are, in principle,
assuming that the demand is increasing or decreasing linearly with time. Just
after the forecast update the estimated demand in the coming period is

a,+ l;, . A natural estimate of the demand rate in the middle of this period 1s
then 4, /tr+ I;, /tr. The trend is Z;, /(ts)*.The corresponding estimate of the de-
mand rate in the beginning of the period, i.e., just after the update, is then

a,/tr + l;, /(2tF). The estimated demand rate « time units after the update is

G, /te+ b, 12t5) + ub, K1),
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The standard deviation of the demand per time unit is obtained according
to (2.50) and (2.55) as

— \/EMADI, (6.25)
(tp) V2

where the parameter ¢ = 1/2 if we assume that forecast errors in different
time periods are independent. This can be regarded as the standard assump-
tion. The parameter ¢ 1s always in the interval (0.5, 1).

Assume that a continuous review (R, Q) policy is used for inventory con-
trol. Since the items are treated independently we shall consider a certain
item with lead-time L. The lead-times are in general different for different
items. Our first step is to update the batch quantity Q. The most common
technique is to use the classical economic order quantity model and let the

average demand per time unit g replace the constant demand per umt of

time. As in (4.3) we obtain
Q= \/_2;1;1 : (6.26)

The ordering cost, 4, is in general, the same for items belonging to the same
inventory control group. The holding cost, 4, is usually determined as a cer-
tain percentage of the value of the item. This carrying charge should include
capital costs as well as other types of holding costs. Usually the carrying
charge is the same for all items in the same inventory control group, but the
holding costs vary among the items because of different values of the items.
A typical carrying charge could be something like 10 - 15 percent if we use
one year as the time unit. The carrying charge is normally higher than the
interest rate charged by the bank. See Sections 3.1.1 and 3.1.2.

Although (6.26) is intended for stationary demand, it is often also applied
when using exponential smoothing with trend. In that case the average de-
mand rate 4 should correspond to the time when the batch is used. Consider
a time interval of length 7 starting at the time of the update. Let D(7) be the
stochastic demand during this interval and g(7) the expected value of this
demand. We have

1. b b . b
g(r) = E{D(2)} = J'i @, + L)+ 2L u)du =(a, + L) +
tr 2 12 2ty
O r F F

,[_2

-+ . 6.27
s @
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By setting g(7) equal to a certain quantity ¢ and solving for z, we can esti-
mate the time 7(d) until a certain quantity d has been demanded. We obtain
7(d) as the solution of a second order equation

2
(d) =t a1 +tp 4,124 (6.28)
bt 2 t 2 bt

We can use (6.27) and (6.28) for estimating the demand rate ahead of
time in connection with determination of reorder point and batch quantity.

Consider, for example, an order just after the forecast update. Assume
that the inventory position is equal to the reorder point R. What is then the
average demand to be used in (6.26)? Let Q" be an estimate of the batch
quantity, e.g., the previous batch size. We will start to consume the batch
around time 7(R), and the whole batch will be consumed around time (R +
Q). About half of the batch has been consumed at time 7'= 7(R + Q'/2). A
reasonable estimate of the average demand rate during the time when the
batch is consumed is then

~ ~

1 . b b, |,
,u:—(at+—’)+—2’—r), (6.29)
tF 2 tF

and we can use this uz instead of (6.24) in (6.26). Recall also from Section
4.1.2 that the costs are very insensitive to small errors in the batch quantity,
so 1t may also be reasonable to use simpler approximations.

It is a little more complicated to take seasonal demand variations into ac-
count when determining batch quantities. In practice it is therefore quite
common to disregard the effect of the seasonal variations on the batch quan-
tities.

To be able to determine the reorder point, we next need to determine the
distribution of the lead-time demand. Let " and ¢’ be the mean and average
of the lead-time demand just after the forecast update. In case of exponential
smoothing we have

u=2y (6.30)
Ir

and in case of exponential smoothing with trend
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p'=g(L). (6.31)

The standard deviation is obtained as

C
o' =olf = | map, | L | (6.32)
2 av;
F

It is not common to take stochastic variations in the lead-time into ac-
count. One reason is that it is usually difficult to determine the lead-time
distribution. If the lead-time variations are known and the deliveries are se-
quential 1t 1s easy to use the approximation based on (5.102) and (5.103).

Given the mean and standard deviation, the most common approach is to
assume that the lead-time demand is normally distributed. For items with
low demand it may sometimes be more appropriate to use a Poisson distri-
bution or a compound Poisson distribution. If we assume that the normal dis-
tribution is used and that there is a given fill rate S, (See Section 5.4), it 1s
easy to determine the reorder point R from (5.52). In case of compound Pois-
son demand we can apply (5.36) and (5.51).

Note that in this section we have used models for stationary demand also
when there 1s a trend in demand. This approximation is usually satisfactory
as long as the trend is relatively small compared to the average.

Example 6.3 We shall update forecast, batch quantity, and reorder point for
an item controlled by a continuous review (R, Q) policy. The updates take
place at the end of each month, and we use one month as our time unit, i.e.,
tr = 1. We apply exponential smoothing with smoothing constant « = 0.1
when updating both the forecast and MAD. At the end of the preceding
month we obtained the forecast a =132 and MAD = 42. We have just re-
ceived the demand during the last month as 92. The batch quantity is deter-
mined according to the classical economic order quantity model. The hold-
ing cost is $1.5 per unit and month, and the ordering cost $200. The lead-
time is two months. The fill rate is required to be 95 percent. The demand
can be regarded as continuous and normally distributed, and forecast errors
during different time periods are assumed to be independent.
As our first step we update the forecast and MAD

a

09-132+0.1-92 =128,

MAD=0.9-42+0.1132-92| = 41.8.
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Next we determine the batch quantity

0 [FTIE grarss. of

It remains to determine the reorder point R from (5.52). First we obtain
and o’ as

[ =2-128 =256,

o-':\/i-\/%-m.s:m.w. (j

Finally, using the search procedure described in connection with (5.52) we
obtain R =313.62 ~ 314.

We have assumed a continuous review (R, Q) policy. Periodic review can be
handled as described in Section 5.12. When using an (s, S) policy instead of
an (R, Q) policy it is common in practice to first determine R and Q for an
(R, Q) policy and then apply the simple approximations =Rand §-s5= Q.
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Problems
6.1°  Consider Example 6.1 and the iterations in Table 6.1. What is the fill rate in
the different iteration steps? Why?

6.2 Verify the transformation in Section 6.1.3.

6.3"  Consider an item which is controlled by a continuous review (R, Q) policy.
The forecast and MAD have just been updated by exponential smoothing as
a =100and MAD = 40. The forecast period is one month. The lead-time is
two months. When adjusting the standard deviation to a different time, the
constant ¢ is set to 0.7. The lead-time demand is normally distributed.

a) Determine the reorder point for S| = 90 percent,
b} For this reorder point determine S, for O =25, 0 =100, and O = 1200.

6.4 Simple exponential smoothing is used for updating the forecast each week.
The smoothing constant is 0.2. MAD is also updated by exponential
smoothing with smoothing constant 0.3. The demand during the past five
weeks is given in the table. Before week 1 the forecast was 100 and MAD
was 10.

Week i 2 3 4 5
Demand 112 96 84 106 110

" Answer and/or hint in Appendix 1.
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6.5

6.6

a) Update forecast and MAD for weeks 1-5. Determine the expected demand
and variance for week 6.

b) Determine (after the update in period 5) batch quantity by the classical
economic order quantity model and reorder point under the following as-
sumptions:

Ordering cost: 100

Holding cost: 1 per unit and week

Lead-time: 2 weeks

81 >95%

Forecast errors in different periods are assumed to be independent.

The demand during the past five weeks 1s given.

Week 16 17 18 19 20
Demand 97 99 100 126 112

Forecasts are determined by both simple exponential smoothing and by
exponential smoothing with trend. For simple exponential smoothing, the
smoothing constant is 0.2. The same smoothing constant is used when
updating the mean with the trend model. The smoothing constant for the
trend is 0.4. When updating MAD the smoothing constant is 0.2. The forecast
errors are assumed to be independent and normally distributed. Before the
first week (16) the forecasted demand was 100.0 and the trend was assumed
to be zero. MAD was 7.

a) Update the forecasts by both methods. Determine mean and standard dev-
iation for week 21 after the update in week 20. Assume stationary stocha-
stic demand. Use the forecast from simple exponential smoothing. Deter-
mine batch quantity by the classical economic lot size formula. Determine
reorder point such that the fill rate is approximately 95%. Make the follo-
wing assumptions:

Ordering cost: 2500
Holding cost: 10 per unit and week
Lead-time: 3 weeks
Continuous review
b) Determine S, for the chosen reorder point.

Consider a continuous review (R, (J) policy. The batch quantity Q = 500. The
lead-time is two weeks. Both S, and S, must be at least 95%. Before week 1
the forecast was X, =100and MAD, = 8. Use simple exponential smoothing

with @ = 0.2 (for both a and MAD) to update the forecast for weeks 1 to 5.
The demands are:
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week 1 2 3 4 5
d 113 101 108 105 95

Use the forecast from week 5 when determining the reorder point. The
demand is normally distributed and deviations in different periods are
independent.



7COORDINATED ORDERING

In Chapters 3-6 it was assumed that different items in an inventory could be
controlled independently. We shall now leave this assumption and consider
situations where there is a need to coordinate orders for different items. In
this chapter we shall still, as in Chapters 3-6, assume that the items are
stocked at a single location. (Multi-stage inventory systems are dealt with in
Chapters 8-10.) We consider traditional inventory costs and constraints, i.e.,
holding costs, ordering or setup costs, and backorder costs or service con-
straints.

When coordinating the replenishments for different items, it 1s common
to use cyclic schedules, and especially so-called powers-of-two policies. In
Section 7.1 we derive some important results for such policies.

There are two main reasons for coordinating the replenishments of a
group of items. One reason, dealt with in Section 7.2, 1s that we wish to get a
sufficiently smooth production load. Assume, for example, that a considered
group of items is produced in the same production line. We then want to co-
ordinate the orders for different items so that they are evenly spread over
time.

The other main reason for coordinated replenishments, which is treated in
Section 7.3, is completely opposite. We want to trigger orders for a group of
items at the same time. This can be advantageous in many situations. It may
be possible to get a discount if the total order from the same vendor 1s
greater than a certain breakpoint. It may also be possible to reduce the trans-
portation costs, for example, by filling a truckload. Sometimes the setup
costs can also be lowered substantially if a group of similar items are pro-
duced together in a machine.
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7.1 Powers-of-two policies

Both when using mathematical algorithms and when choosing schedules
manually, it is very common to use so-called powers-of-two policies in con-
nection with coordinated replenishments. This means that the cycle times are
restricted to be powers of two times a certain basic period. If the basic period
18, for example, one week, nonnegative powers of two give 2°=1 week, 2' =
2 weeks, 2° = 4 weeks, 2° = 8 weeks etc. With negative powers of two we
also obtain 27 = 1/2 week, 272 = 1/4 week, etc. A main advantage of such cy-
cle times is that we obtain relatively simple cyclic schedules. Consider, for
example, two items that are produced every fourth and every ecighth week,
respectively. The total cycle time is then eight weeks, since everything is re-
peated every eighth week. If instead of four and eight weeks we use the
similar cycle times five and seven weeks, the total cycle time would be
5-7=35 weeks, i.e., more than four times longer. Assume, for example, that
both items are produced in week 1. The item with cycle time five weeks is
then produced in weeks 1, 6, 11, 16, 21, 26, 31, 36, etc., and the other item,
with cycle time seven weeks, in weeks 1, 8, 15, 22, 29, 36, etc. So week 36
1s the first time after week 1 when both items are produced.

Consider a number of items with constant continuous demand. Given
holding costs and ordering costs we wish to determine suitable batch quanti-
ties, or equivalently cycle times. (See Section 4.1.1.) We shall show that a
restriction to powers-of-two policies will give a solution which 1s very close
to the optimal solution.

Consider first a single item. Recall the following result from Section
4.1.2.

 1[2.2)
c 2o ¢©

which gives the relative cost increase when deviating from the optimal batch
quantity Q in the classical economic order quantity model. The expression
(7.1) is valid also with a finite production rate (Section 4.2). Furthermore,
since we are dealing with constant demand, d, we can just as well express
the policy through the cycle time 7' = O/d where T" = Q'/d is the optimal so-
lution. This means that we can equivalently formulate (7.1) as

c _1fr.1) o
c 2\t T
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We shall consider cycle times and the representation (7.2) when deriving
our results on the approximation errors, but it is important to note that the re-
sults are also valid for the batch quantities.

Consider now a powers-of-two solution of a lot sizing problem, i.e., as-
sume that the cycle time T has to be chosen as

T=2"¢q, (7.3)

where m can be any integer and where, for the time being, we assume that
the basic period ¢ is given. Assume that 7" cannot be expressed according to
(7.3). We then have to choose either the next lower or the next higher 7 sat-
istying (7.3). Due to (7.3), the ratio between these two values is 2, Note also
that the best solution under the constraint (7.3) is not affected if ¢ is multi-
plied by a power of two. If, for example, ¢ is multiplied by 2, we can reduce
m by 1 to get the same result.

What is the worst possible relative cost increase caused by restricting the
solution with the constraint (7.3)? Because of the convexity, the worst possi-
ble error must occur when two consecutive values of m, saym = kand m =%
+ 1 give the same error. Let T< T correspondto m =k, and 2T> T tom =k

+ 1. We obtain
C;:l L; +mT =l 2{+--T . (7.4)
Cc  2\T T 207" 2T

It is easy to see that (7.4) implies that

I_:2€=J§, (7.5)
r T
and
C;:l[—l—+\/§Jz1.06. (7.6)
¢t 22

We formulate this result as a proposition.

Proposition 7.1 For a given basic period ¢, the maximum relative cost in-
crease of a powers-of-two policy is 6 percent.
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We have only discussed a single item, but Proposition 7.1 is evidently
also true if there are several items, because the worst case occurs when all
1tems incur the maximum error of 6 percent.

Let us now assume that it is possible to change ¢. For a single item we
will then get the optimal solution simply by choosing ¢ equal to a power of
two times 7. If, however, we have N items (tems i=1, 2, ..., N), we can, in

general, not fit g perfectly to all cycle times T;k , which depend on the prob-
lem data for different items. The relative cost increase can be expressed as

N N . .
o 26 2G@c)
e = : (7.7)

C * *
2.C .G

=1 i=l

..
o

-~
-

We know from (7.2) and (7.5) that for a given ¢, each C;/ C; can be ex-
pressed as

i :e(xf):_;_(zxi' +27%),  —1/2<x,<1/2, (7.8)

ie, T, /T, =2% (-1/2<x; <£1/2). The end points x; = - 1/2 and x; = 1/2
correspond to the worst case (7.6). Let us now interpret the weights for the
different values of x; in (7.7), C: /Zﬁl Ci* , as probabilities. Denote the

corresponding distribution function on [-1/2, 1/2] by F(x), i.e., F(-1/2) =0
and F(1/2) = 1. We can see C/C" in (7.7) as an expected value of e(x) and re-
formulate (7.7) as

c 2
— = Ie(x)dF (x). (7.9)
C

Assume now that we change ¢ by multiplying by 2%, where 0< y <1. (Re-
call that multiplying ¢ by a power of two does not affect the solution, so we
are considering the most general change.) If we do not change x this is
equivalent to replacing x by x + y. However, if x + y >1/2 1t is advantageous
to change x to x — 1. This means that a certain x is replaced by x + y forx + y
<1/2,andbyx+y-1forx+y >1/2. Consequently we have
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C 1/2-y 1/2

()= feer AF)+  fe(r+y=DdF(x)
¢ -1/2 1/2~

Y
(7.10)
1/2 y-1/2

- je(u)dF(u )+ je(u)dF(u —p+1),

y-1/2 -172

For a given distribution F(x) the minimum cost increase is obtained by
minimizing (7.10) with respectto 0 < y <1,

We are now ready to prove Proposition 7.2, which shows that the maxi-
mum relative error is surprisingly low.

Proposition 7.2 If we can change the basic period ¢, the maximum relative
cost increase of a powers-of-two policy is 2 percent.

Proof The average cost increase for 0 < y <1must be at least as large as the
minimum and we have from (7.10), by changing the order of integration,

1( 12 y1/2
C
min — ()< || [edF@-y+  [e@dr-y+1)ldy
0<y<l 0l y-1/2 172
1/2 u+l/2 1
- je(u) de(u— )+ de(um y+1) | du
172 0 u+1/2
/2 1/2 |
= J.e(u)(-F(—l/Z)+F(u)-F(u)+F(I/2))du: Ie(u)du: ~1.02.
-1/2 172 V21n2

The worst case will occur when the distribution F{(x) is uniform on
—1/2<x<1/2,see (7.9). A change of g will then not make any difference.
This completes the proof.

Powers-of-two policies are important ingredients of Roundy’s so-called
98 percent approximation. See Sections 7.3.1.2 and 9.2.2.
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7.2 Production smoothing

In general, it 1s a very complicated problem to control the stocks of different
items in such a way that we get both low inventory costs and smooth capac-
ity utilization. To simplify the problem it is common to first disregard sto-
chastic demand variations and solve the remaining deterministic problem.
Safety stocks are then usually determined in a second step using techniques
for independent items, see Chapter 5. However, the deterministic problem
can also be very difficult, especially if there are many items with time-vary-
ing demand and several capacity constraints.

When the demands for different items are relatively stable over an ex-
tended period, it 1s often advantageous to use cyclic schedules as a means to
obtain a smooth production load. This means that each item is ordered peri-
odically, and that the ordering periods for different items are chosen such
that the load becomes as smooth as possible.

Consider, for example, a machine which is used for producing four items
(items 1 - 4) all with about the same demand. It can then be a good idea to
decide that item 1 is produced in weeks 1, 5, 9 ..., item 2 in weeks 2, 6, 10 ...
, 1tem 3 1n weeks 3, 7, 11 ..., and item 4 in weeks 4, 8, 12 ... . This can be
organized by applying periodic review order-up-to-S policies. Each item has
a review period equal to four weeks, but the reviews take place in different
weeks. Since the machine is producing exactly one of the items each week,
the load will be very smooth. As we have discussed in Chapter 3, we need,
for a given lead-time, more safety stock when applying a periodic review
policy as compared to a policy with continuous review. But the alternative of
using a continuous review policy would in this case probably yield large
variations in the production load, which would in turn, result in long and un-
certain lead-times. Longer lead-times would also mean that we need more
safety stock. Furthermore, if we applied a continuous review policy, the
capital tied up as work-in-process would increase and lead to additional
holding costs. In a situation like this, the total costs would generally be much
lower when using the cyclic schedules obtained through the periodic review
policy.

In a general case with many items and several production facilities, it can
be extremely difficult to find suitable cyclic schedules. In Section 7.2.1 we
will deal with different mathematical approaches for solving the problem in
the special case when there is only a single machine. In practice it is most
common to choose cyclic schedules manually without using mathematical
techniques.

When the demand is time-varying, one possible approach is to formulate
the problem as a mixed integer program (MIP) and apply mathematical pro-
gramming techniques to obtain a solution. A typical formulation involves a
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number of items with given demands over a planning horizon, and holding
and setup costs as in the dynamic lot size problem (Section 4.5). To produce
an item, we need to use certain production resources with limited capacities.
We shall consider such a model in Section 7.2.2.

Situations where it is, for various practical reasons, very difficult to coor-
dinate the replenishments for different items are quite common. It can then
still be possible to get a reasonably smooth flow of orders simply by adjust-
ing the order quantities. We discuss such adjustments in Section 7.2.3.

It is also common in practice to smooth production outside the inventory
control system. Orders obtained from the inventory control system are then
not automatically released to production. Release times and order quantities
are instead adjusted with respect to the present production load. One possible
planning rule can, for example, be to not release more orders than there is
capacity to produce within some fixed time frame. Adjustments of the re-
lease times mean essentially that the safety stocks are allowed to vary over
time in order to smooth the load. We know from the models in Chapters 4
and 5 that small changes in batch quantities and safety stocks will, in gen-
eral, not affect the costs significantly, while larger changes can have a sub-
stantial impact. When adjusting the orders obtained from the inventory con-
trol system, it is therefore important to avoid large changes for individual
items. In this context it is also interesting to note that ordering systems of
KANBAN type will automatically limit the number of outstanding orders.
See Sections 3.2.3.1 and 8.2.1.

7.2.1 The Economic Lot Scheduling Problem (ELSP)

7.2.1.1 Problem formulation

We shall now consider a problem that has been dealt with extensively in the
inventory literature, the classical Economic Lot Scheduling Problem. This
problem concerns the determination of cyclic schedules for a number of
items with constant demands. Backorders are not allowed. The production
rate is finite and we wish to minimize standard holding and ordering costs.
Everything is as in the elementary model in Section 4.2 with one exception;
the items are all produced in a single production facility, i.e., we have a ca-
pacity constraint. It turns out that this additional constraint transforms a sim-
ple model into a very challenging problem.

We assume that batch quantities and, equivalently, cycle times are kept
constant over time. Let us introduce the following notation:

N = number of items,
h; holding cost per unit and time unit for item i,

It
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ordering or setup cost for item i,

demand per time unit,

= production rate (p; > d)),
= setup time in the production facility for item i, independent of the

sequence of the items,

cycle time for item / (the batch quantity O; = T d)).

We shall also for simplicity define:

£ =
z‘i -

i

di/pi’

o.1; = production time per batch for item i excluding setup time,
s; + 7 = total production time per batch for item i.

Table 7.1 shows data for N = 10 items. This sample problem was first
presented by Bomberger (1966) and has since then been used extensively in
the literature on economic lot scheduling.

Table 7.1 Bomberger’s problem (time unit = one day).

Ttem

1 2 3 4

3 6 7 8 9 10

b -10°
4

0.2708 7.396 5.313 4.167
15 20 30 10
400 400 800 1600

30000 8000 9500 7500
0.125 0.125 0.25 0.125

116.0 11.15 62.50 245.8 37.50 1.667
110 50 310 130 200 5

80 80 24 340 340 400
2000 6000 2400 1300 2000 15000
0.50 0.25 1 0.5 0.75 0.125

7.2.1.2 The independent solution

Expressing the costs for item i, C;, as a function of the cycle time, 7;, we

have

A. T.
C,=—+hd;(1-p)—. 7.11
1 T i l( pz) 2 ( )

!

The problem is to minimize Zﬁl C; subject to the constraint that all items

should be produced in the common production facility.

A first approach to solving the problem could be to disregard the capacity
constraint and simply optimize each item separately as in Section 4.2. The
optimal cycle time when disregarding the capacity constraint is
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24
e (7.12)
hidi (1 - pl)

C; =24 hd;(1-p;) . (7.13)

and the corresponding cost

Note that (7.11) and (7.12) are equivalent to (4.6) and (4.7) if we replace T;
by Qi/di

Table 7.2 shows this “independent” solution of Bomberger’s problem.
The last row gives the corresponding production times per lot for each of the
10 items.

Table 7.2 Independent solution of Bomberger's problem.

Item 1 2 3 4 S 6 7 8 9 10
T; 167.5 377 393 195 49.7 106.6 2043 20.5 615 393
G 10179 1.060 1.528 1.024 4.428 0.938 3.034 12.668 6.506 0.255
o; 236 201 356 429 249 1.67 3.04 587 11.20 1.17

The sum of the costs, C = Y%, C; = 31.62, is evidently a lower bound for

the total costs, since we have disregarded the capacity constraint.

Is the solution feasible? No, it is relatively easy to see that the solution in
Table 7.2 cannot be implemented. Consider, for example, items 4, &, and 9.
Assume that the production of item 9 starts at some time ¢. The production of
the following batch will then start at time ¢ + 61.5 etc. Since os = 11.20, the
production facility is occupied by item 9 during the interval (7, # + 11.20).
Items 4 and 8 have cycle times 19.5 and 20.5. This means that we must be
able to produce one batch of item 4 and one batch of item 8 in the interval (¢,
¢ + 20.5). Given the production schedule for item 9, this implies that both
items must be produced in (¢ + 11.20, £ + 20.5). The length of this interval is
only 9.30, while g3 + oz = 10.16. The independent solution can consequently
not be implemented.

7.2.1.3 Common cycle time
Does a feasible solution exist? Note first that if at least one setup time is

positive, an obvious necessary condition for a feasible solution to exist is
that
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N
Yo <l (7.14)
i=l1

The left-hand side of (7.14) is the ratio of the time the production facility
must be busy (excluding setup time). Since we also need some time for the
setups, we can see that (7.14) 1s necessary. (If all setup times are zero, (7.14)

should be replaced by EN 41 p; =1.) It is easy to verify that (7.14) is satisfied

for Bomberger’s problem.

It turns out though, that the condition (7.14) is also sufficient for feasibil-
ity. If it 1s satisfied, 1t 1s always possible to find a feasible solution where all
items have a common cycle time. Denote the common cycle time by 7" Dur-
ing the cycle time we produce all items, each time in the same order. The
production quantity for an item is the demand during the cycle time. By
choosing 7 sufficiently large, we can reduce the ratio of the time needed for
setups as much as we need. This explains why (7.14) is sufficient.

Given the assumption of a common cycle time, the problem now is to
minimize

y T
C= Z(—m d.(1- )Zj, (7.15)
i=]

with respect to the constraint that the common cycle time must be able to ac-
commodate production lots of all items

N N
> o =Z(s +pT)<T. (7.16)

(7.17)

1.e., it simply means a lower bound for the cycle time.
If we disregard (7.17), the optimization of (7.15) is similar to (7.12) and
we obtain
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7= i=l . (7.18)

Z di(1- p;)

Since (7.15) 1s convex in 7, the optimal solution, T,,, 1s obtained as

T, =max (f,T (7.19)

» L min )

Le., ifT<T

min the best we can do 1s to choose 1, = Toyin.

For Bomberger’s problem we obtain T =42.75 and Toin = 31.86, and
consequently, 7, = T =42.75 . This gives the costs C =41.17, which is an

upper bound for the optimal solution since we have enforced the additional
constraint that all cycle times have to be equal.
At this stage we know that the optimal costs, C’, are in the interval

C=31.62< C* <C =41.17. For Bomberger’s problem it is rather evident

that the upper bound is not especially tight. If we look at the independent
solution in Table 7.2, we can see that some of the cycle times are very differ-
ent, and we can therefore not expect a good solution with a common cycle
time. For problems where the individual cycle times are reasonably similar,
we can, on the other hand, expect the common cycle approach to give a very
good approximation.

We shall now consider two approaches for deriving better solutions.

7.2.1.4 Bomberger’s approach

Bomberger (1966) generated feasible upper bound solutions by a relatively
simple dynamic programming model. First it is assumed that each cycle time
T} is an integer multiple of a basic period W, i.e., T; = n;W for some positive
integer n;. Bomberger also makes the very restrictive assumption that W
should be able to accommodate production of all items. To see that this con-
dition is not necessary, consider two items (item 1 and item 2), which both
have T, = T, = 2W. We can then produce item 1 in periods 1, 3, 5 ..., and
item 2 in periods 2, 4, 6 ..., and we will never have to produce both 1tems in
the same basic period. The condition will, however, obviously guarantee that
the obtained solution is feasible. Let
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F{w) = minimum cost of producing items i + 1,/ + 2, ... , N when the
available capacity in the basic period is w, i.e., W - w has been
used foritems 1, 2, ..., i.

We now have

F,_(w) =min{C, (n, W)+ F;(w—0,)}, (7.20)

where C(n;W¥) are the costs (7.11) for item [ with T; = n,/¥, g, = s; + pm; W,
and the integer #; is subject to the constraint

1<n, <(w-s;)/ p;W. (7.21)

Note that the upper bound in (7.21) 1s equivalent to o; < w.

It 1s obvious that Fy(w) = 0 for all w > 0. In the first step we determine
Fi(w) for a suitable grid of values of w > 0 from (7.20). Given Fy,(w), we
can next determine Fu.(w), etc. Fo(W) gives the minimum costs when the
basic period is equal to W. In the final step we need to optimize Fo(#) with
respect to . Bomberger’s solution of his example gave the costs C = 36.65
for W=40,n,=1 fori # 7, and n; = 3. This solution 1s a considerable im-
provement as compared to the common cycle approach.

Bomberger’s approach is simple and will always provide a feasible solu-
tion (if a feasible solution exists). Still, the assumption that # should be able
to accommodate production of all items is very restrictive. Later contribu-
tions (Elmaghraby, 1978, and Axsiter, 1984, 1987), have improved the ap-
proach and provide considerably better solutions.

7.2.1.5 A simple heuristic

We shall now consider a completely different heuristic technique (essentially
according to Doll and Whybark, 1973). The procedure means that we suc-
cessively improve the multipliers »; and the basic period W according to the

following iterative procedure:

1. Determine the independent solution and use the shortest cycle time as
the initial basic period .

2. Given W, choose powers-of-two mulitipliers, (n; = 2", m = 0), to mini-
mize the item costs (7.11).

3. Given the multipliers n;, minimize the total costs
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4. Go back to Step 2 unless the procedure has converged. In that case,
check whether the obtained solution is feasible. If the solution is in-
teasible, try to adjust the multipliers and then go back to Step 3.

The main disadvantage of the considered heuristic is that there is no
guarantee for even a feasible solution. On the other hand, the computations
are very easy.

We shall apply the heuristic to Bomberger’s problem. In Step 1 we start
with the shortest cycle time in Table 7.2 as our basic period W = 19.5. In
Step 2 we obtain the powers-of-two multipliers #y =8, #, =2, 13 =2, n, = 1,
ns=2,n,=4,n;=8,ns=1, ny =4, and n;p = 2. In Step 3 we get W= 20.30.
At this stage the algorithm has converged and we have to check whether the
solution is feasible. We can see that this is not the case by using an argument
which is very similar to the argument that we used to show that the inde-
pendent solution is infeasible. We consider again items 4, 8, and 9, and de-
termine o = 4.45, oz = 5.81, and o5 = 14.55. Consider a basic period when
item 9 is produced. Since items 4 and 8 are produced in all basic periods, the
production of all three items must take place in the considered basic period,
i.e., during the time 20.30. This is obviously impossible. A major problem is
the long production time for item 9. To reduce a5, we change ng from 4 to 2
and start the iterations in Step 3. We get W= 23.42 and no more changes of
the multipliers, see Table 7.3.

It turns out that this solution is feasible, see Table 7.4. The total produc-
tion time 1s below W = 23.42 in each basic period. The total costs are C =
32.07, i.e., very close to the lower bound. This is also the best known solu-
tion of the problem.


youse
Pencil


9
¢

162 INVENTORY CONTROL

Table 7.3 Solution of Bomberger’s problem with W= 23.42.

Item 1 2 3 4 5 6 7 8 9 10
8 2 2 1 2 4 8 1 2 2
262 247 419 512 237 150 2.87 663 871 137

Table 7.4 Feasible production plan.

Basic period Items Production time
1 4,8,2,9 22.93
2 4,8,3,510,1 22.30
3 4,8,2,9 22.93
4 4,8,3,510,6 21.18
5 4,8,2,9 22.93
6 4,8,3,5,10,7 22.55
7 4,8,2,9 22.93
8 4,8,3,5,10,6 21.18

The solution in Table 7.4 is repeated every 8th period. Note that it is eas-
ier to check feasibility when using powers-of-two policies since the total cy-
cle time is usually relatively short. There are still, however, a large number
of plans that correspond to the solution in Table 7.3. If n; = 4, for example,
we can produce item 7 in periods 1 and 5, or in periods 2 and 6, or in periods
3 and 7, or in periods 4 and 8, i.e., there are 4 possibilities. More generally
the number of possibilities for item 7 is equal to n;. We can, however, without
any lack of generality, always allocate one of the items with maximum #;,
say item 1, in some arbitrary period. If, consequently, we disregard the allo-
cation of item 1, the number of remaining possibilities can be obtained as the
product of the multipliers of the remaining items 2 - 10, i.e.,
2:2.1-2-4-8-1-2-2=1024.

Although the classical economic lot scheduling problem involves only a
single production facility, it can also be of interest in more general situa-
tions. For example, if there are several production facilities with limited ca-
pacities, it is quite common that one of the constraints constitutes the real
bottleneck. It is then a reasonable approach to first derive a plan that only
takes this constraint into account, and then in a second step, try to adapt the
plan to other capacity limtitations.
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A more detailed overview of different approaches to solving the problem
is provided in Elmaghraby (1978). Feasibility issues are analyzed by Hsu
(1983).

7.2.1.6 Other problem formulations

In Sections 7.2.1.1 - 7.2.1.5 we have considered the classical Economic Lot
Scheduling Problem. Several papers have dealt with a variation of this prob-
lem. This more general formulation of the problem allows the lot sizes to
vary over time. There is still a cycle time 7, which is the overall pertod of
the system. The schedule repeats itself every 7 units of time. Each item is
produced during 7 but some items may be produced more than once. Fur-
thermore, the batch sizes of these runs may be different. See, for example,
Dobson (1987), Roundy (1989), and Zipkin (1991).

Gallego and Roundy (1992) allow backorders, while Gallego and Moon
(1992) consider a situation where setup times can be exchanged by setup
costs.

There are also quite a few papers dealing with stochastic demand. In case
of stochastic demand it is necessary to allow backorders and/or capacity
variations, for example by using overtime production. See Sox et al. (1999)
for a review. They classify the existing research approaches in two catego-
ries: cyclic sequencing and dynamic sequencing. The cyclic sequencing
category uses a fixed cyclic schedule on the production facility, while the lot
sizes are varied to meet demand variations. The cyclic schedule can, for ex-
ample, be obtained from a deterministic model. Dynamic sequencing means
that both the production sequence and the lot sizes are varied. Examples of
the cyclic sequencing approach are Gallego (1990), Bowman and Muckstadt
(1993, 1995), and Federgruen and Katalan (1996a, b). Papers considering
dynamic sequencing are e.g., Graves (1980), and Sox and Muckstadt (1997).

7.2.2 Time-varying demand
7.2.2.1 A generalization of the classical dynamic lot size problem

Recall the classical dynamic lot size problem 1n Section 4.5. In this section
we shall consider a generalization of this problem. Instead of a single item
there are N items. Furthermore, these items are produced in the same ma-
chine, which has limited capacity. (The generalization to several machines is
relatively straightforward.) For simplicity, it is assumed (as in Section 4.5)
that all events take place in the beginning of a period. A quantity that is pro-
duced in period ¢ can also be delivered to customers in period z. The de-
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mands for different items are given but vary over time. No backorders are
allowed. Let us introduce the following notation:

N = number of items,
T = number of periods,
d;; = demand for item i in period ¢,
a; = setup time for item i,
b; = operation time per unit for item i,
q: = available time in the machine in period t,
M;, = upper bound for the production of item i in period ¢,
A; = ordering or setup cost for item i,
h; = holding cost per unit and time unit for item i,
X;; = production quantity of item / in period ¢,
vi; = inventory of item { after the demand in period ¢, y; = 0,
{ lif x;, >0,
Ot = T
' 0 otherwise,

C = total variable costs.
We wish to choose production quantities in different periods so that the sum

of the ordering and holding costs C are minimized. The considered problem
can be formulated as a Mixed Integer Program (MIP).

N T 7
C *minZ[A,-Z&J +h Y ym}, (7.22)
=1 =1 1=l

subject to
N
> (a;6i, +bixi,)<qp, 1=12,T, (7.23)
i=1
yl',l :yi,l"E + xi’t _di,f’ t:1,2,....,T,i :1,2,...,N . (7.24)
X, =M;, 06, <0, t=12,..T,i=12,.,N, (7.25)

.xl"t > O, yi,f > 0, 5"’[ IO or l, 121,2,....,T,i :1,2,...,N . (7.26)

We need the constraint (7.25) to enforce that production in a period implies
that there 1s a corresponding setup time and setup cost. If there is no upper
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bound on x;,, we can let M,, be very large. In the sequel it is assumed that
this is the case.

Although the considered problem can be seen as a minor variation of the
classical dynamic lot size problem, the model is quite complex. If, for exam-
ple N =100 and 7 = 12, there are 1200 integer variables and 2400 nonnega-
tive continuous variables. The number of constraints (7.23) - (7.25) 1s 2412.

A possible approach is to eliminate the capacity constraints (7.23) by a
Lagrangian relaxation. Let 4, > 0 be the multiplier for period . We get the
Lagrangean:

T T
L=- g, +min Y. Y (4 + ,4)8;, + hyyiy +bxg 2 ). (1.27)

=1 i=1 1=l
It is easy to see that the following proposition is true (Problem 7.7).
Proposition 7.3 For any nonnegative multipliers L < C.

Consider (7.27) together with the constraints (7.24) - (7.26). Because we
have eliminated the capacity constraint (7.23) we can determine L by opti-
mizing each item separately for certain given multipliers. For item i, the
problem that we need to solve is a generalized dynamic lot size problem (see
Section 4.5) with a time-variable setup cost 4; + a;4, and an additional time-
variable production cost per unit b; A, Also this more general problem is
easy to solve, e.g., by dynamic programming.

If we want to get a tight lower bound for C we can solve the dual prob-
fem.

D= max L. (7.28)
Ay A ey

In general, we will get a duality gap 1.e., D < C because our MIP is noncon-
vex. A tight lower bound is very useful, though. We can, for example, check
whether a heuristic feasible solution to the original problem gives a cost that
1s reasonably close to the lower bound. In that case we know that the ap-
proximate solution is acceptable. Furthermore, if we want to solve the origi-
nal problem by a branch-and-bound procedure, we can determine the needed
associated lower bounds from the dual problem.

Let us now consider another interesting approach for solving the problem
(7.22) - (7.26). Note first that in an optimal solution of the considered prob-
lem all items must have y;r = 0. Otherwise we would just get unnecessary
holding costs. Let us now focus on one of the items. (For simplicity, we sup-



166 INVENTORY CONTROL

press index i.) We shall say that a production plan, (x;, X2, ... , X7), 1s de-
mand-feasible if all demands are satisfied without delays and the end stock is
zero. It is easy to verify that the set of demand-feasible plans is convex, i.e.,
if two plans are demand-feasible, a convex combination of these plans is also
demand-feasible (Problem 7.8).

In Section 4.5 we showed that the optimal solution of the dynamic lot
size problem must satisty Property 1, meaning that the production in a pe-
riod must cover the demand in an integer number of consecutive periods.
This is no longer true for our more general problem with a capacity con-
straint. However, it turns out that the set of such plans constitute the extreme
points of the convex set of all demand-feasible plans.

Proposition 7.4 The set of plans satisfying Property I constitute the extreme
points of all demand-feasible plans.

Proof Consider first a demand-feasible plan, which does not satisfy Property
{. Then there must exist a period j such that the demand in this period is
covered partly by the production in some period & <, and partly by the pro-
duction in period j. We denote this plan by x. Let ¢ be a small number and
consider two other plans x" and x"*, which are almost identical to x. The
only differences are that in x” we replace x; by x; + £and x; by x; - & and in
x""we replace x; by x; - £and x; by x; + & Clearly these plans are demand-
feasible provided ¢ is sufficiently small. But x = (x" + x"'}/2, so x is not an
extreme point.

Consider then the set of plans satisfying Property [. Let x be such a plan
and assume that it can be expressed as a convex combination of two other
such plans y and z. We shall show that this assumption leads to a contradic-
tion. It follows that all periods without production in x must be without pro-
duction also in y and z. This means that the difference between y (or z) and x
is that some of the batches associated with x have been aggregated. (Recall
that we by assumption cannot have the same batches.) Any given holding
cost £ > 0 will then give higher holding costs for y and z than for x. It is easy
to see that this must then also be true for a convex combination of y and z.
This is a contradiction and completes the proof.

Proposition 7.4 implies that any demand-feasible plan can be expressed as a
convex combination of plans satisfying Property I. Let us now reintroduce
index i for item i. Consider the plans for item 7 satisfying Property I and as-
sume that these plans are numbered in some way. Let R; be the total number
of plans. (R; <2"", see Problem 7.9.) Furthermore, let

X;,» = production of item 7 in period ¢/ when using plan r,
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¢;, = costs for item i when using plan 7,
P = capacity requirements for item / in period ¢ when using plan r.

Using Proposition 7.4 we can express the production of item { in period ¢ for
any demand-feasible plan as

R
X =D X0, (7.29)
r=1
where
Ri
D6, =1, (7.30)
r=}
and &, > 0.
We are now ready to formulate the following linear programming model:
N K
mnC=>% ¢, 6,,, (7.31)
i=1 r=l1
N R
ZZﬂi,t,rHi,r gqt: t:1>2a"-:T7 (732)
i=1 r=1
R
ng,l” :]3 i:152)"'aNa (733)
r=1
0;, 20, =12, ,N,r=12,..,R;. (7.34)

Although (7.29) is exact, the considered linear program is an approximation
unless all @, are 0 or 1. Assume, for example, that for item / we have
G1=6,=1/2,1ie., we are using a mixed strategy with weights 1/2 for plans
1 and 2. Assume also that plan 1 has production in period ¢ but not plan 2.
According to (7.31) the setup cost in period ¢ is only half of the correct setup
cost. In the same way we will underestimate the setup time in (7.32).
Although, the linear program (7.31) - (7.34) is approximate, it turns out
that the approximation in many important cases is very good. If we solve the
linear program we will get a solution that has at most 7+ N nonzero vari-
ables, i.e., the number of constraints (excluding nonnegativity constraints).
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Assume that there are m items that have more than one positive &,,. The total
number of nonzero variables is then less orequal to 2m + N—-m=m+N<T
+ N so we get m < 7. If there are many items and few time periods the frac-
tion of mixed strategies will be very small. Let, for example, N =500 and 7
= 5. We then have m < 5. This means that the fraction of items with mixed
strategies 1s at most 1 percent. The resulting solution may not be optimal and
may also be infeasible. Still, from a practical point of view, the solution is
probably very good. The real capacity constraint is usually not that rigid. It
may, for example, be possible to use some overtime. The resulting costs will
be very close to the optimal costs. Note, however, that in case of a small N
and a large 7 the considered model is of less interest. See, €.g., Example 7.1
below.
The first model of this type was formulated by Manne (1958).

Example 7.1 Consider a problem with two items and three periods. See Ta-
ble 7.5. There are no mitial stocks. The available production capacity is 100
time units per period. For both items the setup time is 15 time units and the
operation time is one unit of time per unit. The holding cost is 1 per unit and
time unit. There 1s no setup cost.

Table 7.5 Demands in different periods.

Item Demand, Demand, Demand,
period 1 period 2 period 3
1 25 25 75
2 20 50 25

First we determine the extreme points of the set of demand-feasible plans,
1.e., the plans satisfying Property 1. See Table 7.6.

Table 7.6 Demand-feasible plans.

Item Plan Production,  Production, Production,
period 1 period 2 period 3
1 1 125 0 0
1 2 50 0 75
1 3 25 100 0
1 4 25 25 75
2 1 95 0 0
2 2 70 0 25
2 3 20 75 0
2 4 20 50 25
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The holding costs (no setup costs) and the capacity requirements for the de-
mand-feasible plans are:

Ci1 = 175 Cia = 25 C1a~ 75 Cla~— 0

1 = 100 Cra = 50 Cr3 = 25 Crq = 0

ﬂm,l =140 ,51,;,2 =065 ﬂu,s =40 /31,1,4 =40
ﬁz,u =110 ,32,1,2 =85 ﬂz,t,s =35 ﬂ2,1,4 =35
ﬁi,z,t =0 /5'1,2,2 =( ﬂ1,2,3 =115 ﬂ1,z,4 =40
152,2,1 =0 ﬂz,z,z =0 ﬂ2,2,3 =90 ﬂz,z,q =065
ﬁi,s,l =0 ﬁl,z,z =90 ﬁ1,3,3 =0 ﬁ1,3,4 =90
ﬂz,a,l =0 ﬂz,z,z =40 ﬁ2,3,3 =0 /62,3,4 =40

The linear program (7.31) - (7.34) is then obtained as:

min C = 17591’1 + 2591’2 + 7591’3 + 10092’1 + 5062,2 + 2592,3 . (735)

+1108,; + 856, 5 + 356, 3 + 356, 4 <100, (7.36)
1150, + 400, , +900, ; + 650, , <100, (737)
906, , +906), , + 400, , + 408, , <100, (7.38)

O +01, +03+6 4 =1, (7.39)
Oy + 0y +0y5 +0,,=1, (7.40)
011,61 2,0,3,6,4,0,,,60,,,6,5,0,420. (7.41)

Let m be the number of items that have more than one positive &,. Our
bound m < T = 3 is in this case of no interest, because there are only two
1tems.

When solving the linear program (7.35) - (7.41) we get the following
nonnegative 6,,: 6, = 3/4, 6, = 1/4, and 65 = 1. The corresponding pro-
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duction plans are (175/4, 25/4, 75) for item 1 and (20, 75, 0) for item 2. The
optimal cost obtained from the linear program is 175/4. It is easy to see that
the obtained solution is not feasible (Problem 7.10).

7.2.2.2 Application of mathematical programming approaches

Recently there has been a renewed interest in mathematical programming
models for production-inventory planning. One reason is that such models
are quite often included as so-called Advanced Planning Systems (APS) in
modern Enterprise Resource Planning (ERP) systems. An overview of APS
systems is given by Fleischmann and Meyr (2003). ERP systems are dis-
cussed in Section 8.2.4.

As 1llustrated in Section 7.2.2.1, detailed models dealing with individual
items are, In general, quite complex due to nonlinear setup times and costs.
Still, 1t is possible to solve relatively large problems of this kind quite effi-
ciently. Shapiro (1993) gives an overview of these types of models. See also
Billington et al. (1983) and Eppen and Martin (1987).

One possibility to partly avoid the difficulties associated with setup times
and setup costs is to use a hierarchical planning procedure. This means that
the planning is carried out at two (or more) hierarchical levels. This is in line
with standard industrial planning procedures. At an upper level an aggregate
problem is considered. This problem concerns aggregate entities like product
groups and machine groups. At the lower level the aggregate plan is disag-
gregated into a detailed plan for individual items and machines. The disag-
gregation is usually carried out by a simple heuristic procedure. In a model
representing the aggregate level, it is usually necessary and reasonable to
disregard the nonlinearities because they are associated with individual
items. It is consequently possible to use linear programming. Furthermore,
the number of variables and constraints are reduced by considering product
groups and machine groups instead of individual items and machines. There-
fore the model becomes less complex.

An overview of hierarchical planning models is given by Bitran and Tiru-
pati (1993). See also the discussion of different planning concepts in De Kok
and Fransoo (2003).

7.2.3 Production smoothing and batch quantities

In many situations it is not practical to smooth production by active coordi-
nation of the replenishments. If, for example, the demands of different items
are varying substantially over time, it is difficult to smooth production by
using cyclic schedules. It may still be an important goal to avoid excessive



CORDINATED ORDERING 171

queues in production, though. A remaining possibility is to try to adjust the
batch quantities in order to obtain a reasonably smooth load.

Many companies have found that smaller order quantities may smooth
the production load and reduce the queues in production. There is a simple
explanation for this. If the orders arriving to production can be seen as a sto-
chastic process, smaller batches will reduce the variations over time due to
the laws of large numbers. The load during a certain time 1s then built up of a
larger number of smaller batches. If the orders are more or less independent,
this will clearly smooth the load. On the other hand, we cannot use order
quantities that are too small, since this will mean that the setup times will
take too much of the available capacity into account and increase the queues.
As usual, we have to find a suitable middle way.

The models which we have dealt with in Chapters 4 - 6 do not address
these types of questions. In these models it is assumed that the lead-time is
constant, or that the lead-time distribution is given but independent of the
batch quantity. But from our discussion it 1s obvious that there are situations
when this is not true and the lot sizes strongly affect the lead-time distribu-
tion. There are some lot-sizing models that explicitly take the queuing situa-
tion in production into account. We shall consider a simple such model es-
sentially according to Karmarkar (1987, 1993). See also Axsiter (1980,
1986), Bertrand (1985), and Zipkin (1986).

Consider a machine in a large multi-center shop. This machine is used for
producing a number of similar items having the same batch size. We define

= average total demand for all items, units per time unit,
average processing rate, units per time unit,

batch quantity for an item,

setup time for a batch,

= average time in the system for a batch.

~N QT S
I

We shall, for simplicity, assume that the batches arrive at the machine as
a Poisson process with rate 4 = d/Q. This is a reasonable approximation if
there are relatively many items. Let us also, for simplicity, think of the proc-
essing time as exponentially distributed. The average processing time for a
batch is 1/x=s + Q/p and the service factor p= A /x= ds/Q + d/p. The aver-
age time in the considered (M/M/1) queuing system is then

Uk  s+Q/p

= = : (7.42)
l-p 1-ds/Q-d/p
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Note that we must require p < 1, or equivalently, O > ds/(1 — d/p), i.e., the
cycle time must on average accommodate both the setup time and the opera-
tion time.

By minimizing the average time in the system, 7, with respect to Q, 1t 18
possible to show that the minimum occurs for

ds S\/E

= + :
l-d/p 1-d/p

0 (7.43)

The average time in the system is large both when using batch quantities
that are too small and when using batch quantities that are too large. When
the batch quantities are too small the setup times will require too much ca-
pacity. When the batch quantities are too large the production time for a
batch 1s long and there are also more stochastic variations in the production
load, which will cause longer queuing times.

If we wish to minimize the sum of holding costs for work-in-process we
should, in the considered case, use Q according to (7.43). However, there are
also other objectives when choosing the batch size. For example, there are
holding costs for stocks of completed items. There may also be ordering
costs. The holding costs for completed items are clearly affected by the re-
plenishment lead-time. We can see (7.42) as the lead-time (or part of the
lead-time) when modeling the stocks of completed items. (This means that
we disregard that the lead-time is stochastic.) Doing so, we can include
holding costs for both work-in-process and the stocks of completed items in
the same model when determining batch quantities and reorder points.

Note that the average time in the system for a batch is, in steady state, not
affected by the reorder points for completed items.

7.3 Joint replenishments

In Section 7.2 we have considered situations where we want to have orders
for different items spread out over time in order to get a smooth production
load. In this section we shall deal with the opposite problem, i.e., we shall
consider a group of items which should be replenished jointly as much as
possible. As we have discussed previously, there are several possible reasons
for joint replenishments, for example, joint setup costs, quantity discounts,
coordinated transports, etc.

The methods for determination of batch quantities and reorder points that
we have dealt with in Chapters 4 - 6 are evidently not directly applicable in
case of joint replenishments. If there is a joint setup cost, for example, we
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wish to have a total order size that is sufficiently large while the individual
lot sizes may be of less importance. We would also like to choose the batch
sizes such that we have reasonable possibilities to coordinate future orders.
Furthermore, we can normally not use reorder points that have been deter-
mined individually. Assume that the individual reorder points correspond to
a certain service level that we would like to maintain. If we make a joint re-
plenishment as soon as one of the items reaches its reorder point, other items
will be ordered too early. This means that the service level (and the holding
costs) will be higher than what was intended.

7.3.1 A deterministic model

A common way of modeling joint replenishment problems is to assume that
there are two types of ordering or setup costs: individual setup costs for each
1tem, and a joint setup cost for the whole group of items. The joint setup cost
does not depend on the number of items that are ordered. We shall first con-
sider such a model with constant continuous demand. No backorders are al-
lowed. The cycle times, or equivalently the batch quantities, are constant.
The production time can be disregarded. We can also without any lack of
generality disregard the lead-times, provided they are the same for all items.
Let us introduce the following notation:

N = number of items,

h; = holding cost per unit and time unit for item £,
A = setup cost for the group,

a; = setup cost for item i,

d; = demand per time unit for item i,

T; = cycle time for item /.

The problem is to determine cycle times in order to minimize the sum of
holding and setup costs. Given a cycle time 7}, the corresponding batch
quantity Q; is obtained as Q; = Tid;. To simplify the notation we shall replace
the holding costs %; by 7; = hd;, and set all demands equal to one. It is easy
to check that this will not change the problem. (See Problem 7.12.) Further-
more, we assume for simplicity, that the items are ordered so that a,/7; <
am < ... < ap/ny. We shall consider two approaches to solve the problem.
The first approach is a simple iterative technique. The second one is based
on Roundy’s 98 percent approximation.
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7.3.1.1 Approach 1. An iterative technique

If there were no joint setup cost the optimal cycle times could be determined
by the classical economic lot size formula as:

T, = —, (7.44)

1.e., 7y would be the smallest cycle time. A natural approach to solving the
problem is therefore to assume that the cycle times of items 2, 3, ..., N are
integer multiples #; of the cycle time for item 1, or equivalently,

T,=nTy, i=23,..,N. (7.45)

Our objective is then to minimize the total costs per time unit,

N N
A+a1+zai/”i T1(’71+Zf7f”i
i=2

C= =2 + : : (7.46)
1 2
with respect to Ty, 5, 13, ..., Hy.
Given ny, ns, ... , 0y, the optimal 77 and the corresponding costs are ob-

tained as:

N
2(A+a +Zai /n;)
YT!* (n25n3,...,nN) = (=2 , (747)

N
DM,
=2

N N
C (ny,n3,...,1y) :\/2(A+a1 +Zai /'n;)(m +Zmni) . (7.48)
i=2 i=2

Note that 7}" is not chosen according to (7.44).

If we disregard that n, ns, ... , ny have to be integers and optimize the
costs (7.48), it is possible to show (Problem 7.13) that:
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Y il B | — (7.49)
n; (A+a;)

Inserting (7.49) in (7.48) we get the following lower bound for the costs:

N
C=y2d+a)m + Y \2a7; . (7.50)
i=2

The lower bound (7.50) can also be understood in the following way. As-
sume that there is no joint setup cost but that the individual setup cost for
item 1 1s 4 + a,. If we optimize each item separately we obtain the total costs
(7.50). But the considered problem is clearly a relaxation of the original
problem since we can have setups of items 2, 3, ... , N without any joint
setup cost. Consequently (7.50) is a lower bound for the total costs.

We are now ready to formulate a heuristic for the original problem where
Ry, H3, ... , By @re integers.

1. Determine start values of n,, ns, ... , ny by rounding (7.49) to the closest
positive integers.

2. Determine the corresponding 7, from (7.47).

3. Given I, minimize (7.46) with respect to #n,, #3, ..., ny. This means that
we are choosing »; as the smallest positive integer satisfying:

2q.
1 (n; +1) 2 ‘;12 | (7.51)
it

Return to Step 2 if any multiplier #; has changed since the last iteration.

Since the procedure gives an improvement in each step it will obviously
converge, but not necessarily to the optimal solution. The resulting costs can
be compared to the lower bound (7.50).

Example 7.2 Consider N = 4 items with a joint setup cost 4 = 300. The indi-
vidual setup costs are ¢; = a, = a3 = a4 = 50, and the holding costs are &, = A,
= h3 = hy = 10. The demands per time unit are d; = 5000, &, = 1000, d; = 700,
and d; = 100. Note that in this case 7; = hd; = 10d;.. As requested, a/n; 1s
nondecreasing with i. When applying the heuristic we obtain:
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\/ 50 5000-10
n2=

NI,HB zl,n4 z3
1000-10 350

) YHZ’J 2.(350+50+50+50/3) Collss
10-5000+10-1000+10-700+10-100-3

3. We again obtain the multipliers n, = 1, ny = 1, n, = 3, i.e., the algorithm
has already converged.

We get the resulting costs from (7.48) as C = 8082.9, which can be com-
pared to the lower bound according to (7.50) C = 8069.0.

Related procedures are described in e.g., Goyal and Satir (1989), and Sil-
ver et al. (1998). A technique for finding a solution with an arbitrarily small
deviation from the optimal value 1s given by Wildeman et al. (1997).

7.3.1.2 Approach 2. Roundy’s 98 percent approximation

We shall now look for a solution where the joint setups have cycle time 7, =
0, and all other cycle times are nonnegative powers-of-two times 75, 1.e.,

T, =251, i=1,2,..,N, (7.52)

where k; 1s a nonnegative integer. Using the notation @, = 4, and 7, = 0, we
can express our objective as:

Ny 1
min Z n—+a;—|, (7.53)

subject to the constraints (7.52). This means that we let the joint setups be
represented by a fictive item 0.
Let us now relax the considered problem by replacing (7.52) by

T, > T,, i=1,2,..,N. (7.54)

It is a relaxation because (7.52) implies (7.54) while the opposite is not true.
The resulting solution will therefore give a lower bound for the costs.
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Consider the relaxed problem, i.e., (7.53), with respect to the constraints
(7.54). Since the objective function is convex and the constraints are linear,
we can get the solution from the following Lagrangean relaxation:

N T 1 N
max min_ Z(m-—’-JraiF}rZﬂi(TO—Ti), (7.55)

Aidydy ToTinadn o 2 ; -

where the multipliers A; are also required to be nonnegative. Let us define:

N
776 =11y +2Zﬂ‘i ’
i=]
m=m-24,
(7.56)
T?}V = 77N - 21}\1

It is easy to see that the optimal solution must have all ] > 0. Otherwise T;

— oo, which is obviously not optimal.
Given the multipliers, the optimal solution of the relaxed problem can be
obtained by solving:

N T 1
min Z ni—+a; —|, (7.57)

I, TieTy 425 2 T,

without any constraints on the cycle times, i.e., we have N + 1 independent
classical lot sizing problems.
Let us now go back to the original joint replenishment problem but with

cost parameters ¢; and 77; . Consider the effect of /; on the holding costs. The

holding cost of item i is reduced by 24; and the holding cost of item 0 is in-
creased by 24,. This will mean a cost reduction for any solution of the joint
replenishment problem, even if we allow the periods between orders to vary
over time. To see this, consider the period between two orders for item i > 0.
If there are additional joint setups between the two orders the total holding
costs during the considered period will decrease, otherwise they will be the
same,
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But given the cost parameters @; and #;, (7.57) will obviously provide the

minimum cost since no constraints are considered. The optimal solution of
the relaxed problem will consequently give a lower bound for the costs of
any solution. This bound is tighter than (7.50) because of the constraints
(7.54).

Assume that we have solved the relaxed problem. We can then adjust this
solution by rounding the cycle times so that they can be expressed as:

T, =2"gq (7.58)
for some number ¢ > 0. We know from Proposition 7.1 in Section 7.1 that if
g is given, the maximum cost increase is at most 6 percent, and if we can
also adjust ¢ to get a better approximation, the cost increase is at most 2 per-
cent according to Proposition 7.2. Due to (7.54), we know that m; = m, and
the cycle times obtained must consequently satisfy (7.52). We have now ob-
tained Roundy’s solution of the problem. This solution has an important
quality. The cost increase compared to the optimal solution is at most 2 per-
cent, since it is at most 2 percent compared to the lower bound (7.57).

It is possible to use the considered Lagrangean relaxation for numerical
determination of Roundy’s solution, but in general, it is much simpler to use
the following technique. Since the items are ordered so that «;/7; are nonde-
creasing with ¢ for i > 0, it is obvious from (7.53) and (7.54) that the optimal
cycle times in the relaxed problem are nondecreasing with / for i > 0. It is
also clear that we must have T, = T, in the optimal solution of the relaxed
problem because a; = 4, and 7, = 0. This means that

7,27, i=1,2,..,N. (7.59)

Consider the relaxed problem with (7.54) replaced by (7.59). This will
not change the optimal solution. Without the constraints (7.59) it would be

optimal to use Ti*= (2ai/m)"* for all i. Consequently, if a/7; is increasing
with i, we have found the optimal solution since the resulting batch quanti-

ties will satisfy (7.59). Since 7, = 0 this is never the case initially. Assume

that for some i, a/n; < a./7,, or equivalently that T[-*<Tl-*_1. Assume

furthermore that in the optimal solution 7; > 7;,. Because of the convexity

this implies that T; ST,-* since we would otherwise reduce 7;, and similarly

that 7, = Tl-il since we would otherwise increase 7;;. But this means that 7;

< 7}, which is a contradiction. Consequently, 7; = T}, in the optimal solution
of the relaxed problem. But this implies that we can aggregate items 7 - 1 and
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i into a single item with cost parameters a;; + a;, and 7., + 7. Next we con-
sider the resulting reduced problem with one item less. If a/n; < a.\/n:; for
some [ we can aggregate the two items, otherwise we obtain the optimal so-
lution from the classical economic lot size model, etc.

Since 7, = 0 we will always aggregate items 0 and 1. After aggregation
we have an item with cost parameters 4 + @, and 7,. Next we check whether
ay/ 1, < (A + a;)/ . If this is the case the aggregate item should include also
item 2, etc. When no more aggregations are possible, we can optimize the re-
sulting aggregate 1tems individually.

Example 7.3 Consider the same data as in Example 7.2, i.e., N=4, 4 = 300,
a = a; = a; = aq = 50, 1, = 50000, 73, = 10000, 775 = 7000, and 77, = 1000.

To solve the relaxed problem we first aggregate items 0 and 1. The com-
bined item has cost parameters 4 + a; = 350, and 7, + 7, = 50000. Consider
then item 2. Since ay/7, = 50/10000 < 350/50000, item 2 should also be
added to the combined item. The resulting cost parameters are obtained as A
+a; +a, =400, and 1, + 1, + 7, = 60000. Consider item 3. Since 50/7000
> 400/60000, item 3 should not be added. Compare finaily item 4 and item 3.
We get 50/1000 > 50/7000, i.e., items 3 and 4 should not be combined. This
gives the cycle times T, = T, = T, = (800/60000)"* = 0.1155, Ty =
(100/7000)"* = 0.1195, and 7, = (100/1000)"? = 0.3162. The resulting lower
bound for the costs is C= Copsa + C3 + Cy = 6928.2 + 836.7 + 316.2 =

8081.1. Note that this bound is better than the bound obtained in Example
7.2

Consider then cycle times that can be expressed as powers of two, i.e., let
g =11in(7.58). We obtain T, =7, =7,=2"=0.125, T, =27 =0.125, and Ty
= 27 = 0.250. The resulting costs are C = Cyjs + C3 + Cy = 6950 + 837.5 +
325=8112.5,1.e., 0.39 percent above the lower bound.

By minimization of (7.10) it is possible to show that it 1s optimal to have
g =188 in (7. 58) The corresponding cycle times are T, =T, =T, =27 =
0.1175, T, =2" g=0.1175,and 7}, = 2 q = 0.235. The resulting costs are C =
Corpa + C3 + C4=6929.3 + 836.8 + 330.3 = 8096.3, 1.e., 0.19 percent above
the lower bound. The solution in Example 7.2, which is not a powers-of-two
policy, is still slightly better.

A similar approach is used for multi-stage lot sizing in Section 9.2.2. See
also Jackson et al. (1985), Roundy (1985, 1986), and Muckstadt and Roundy
(1993).

The two approaches considered assume constant demand, but can also be
used in case of stochastic demand. We then replace the stochastic demands
by their means when determining cycle times. Given the cycle times we can,
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using the techniques in Section 5.12, determine appropriate periodic review
S policies for each item. The order-up-to inventory positions should include
suitable amounts of safety stock. Next, in Section 7.3.2, we will consider a
different model that is more directly focused on stochastic demand.

7.3.2 A stochastic model

We shall now instead consider a stochastic model. The demands for the
items are independent and stationary stochastic processes. Each customer
demand is for an integral number of units. We can, for example, consider
Poisson or compound Poisson demand processes. We assume complete
backordering. Let us introduce the following notation to describe the prob-
lem:

N = number of items,

h; = holding cost per unit and time unit for item i,
b,,; = shortage cost per unit and time unit for item i,
A = setup cost for the group,

a; = setup cost for item i,

L = constant lead-time.

Viswanathan (1997) suggests the following technique that, in his numeri-
cal tests, outperforms other suggested methods.

In the first step we disregard the joint setup cost and consider the items
individually for a suitable grid of review periods 7. For each review period
we determine the optimal individual (s, S) policies for all items and the cor-
responding average costs. This can be done very efficiently as explained in
Section 6.1.1.2 Let

Ci(T) = average costs per time unit for item 1 when using the optimal
individual (s, S) policy with a review interval of T time units.

In the second step we determine the review period 7 by minimizing,

N
C(T)=A/T+Y C(T). (7.60)

i=1

Note that the actual costs are lower than the costs according to (7.60),
since the major setup cost A is not incurred at reviews where none of the
items are ordered.
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Atkins and Iyogun (1988) also use periodic review policies but in a dif-
ferent way.

Other policies that have been used frequently in the inventory literature
are so-called can-order policies. When using such a policy there are two re-
order points for each item: a can-order level and a lower must-order level.
An 1tem must be ordered when its inventory position reaches the must-order
level. When an item in the group is ordered, other items with inventory posi-
tions at or below their respective can-order levels are also ordered. This type
of policy was first suggested by Balintfy (1964). Techniques for designing
can-order policies have been suggested by Silver (1981) and Federgruen et
al. (1984).

Renberg and Planche (1967) suggested a so-called (S;, Q) policy. Accord-
ing to this policy all items are replenished up to certain levels S; when the
total demand for the whole group since the preceding replenishment has
reached Q.
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Problems

7.1  Show that (7.4) implies (7.5).
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7.2

73"
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a) Show that

b) Show that the worst case will occur in (7.9) if x is uniform on (- 1/2, 1/2).
What happens if we change ¢? Why?

Three products are produced in a single machine. The demands are constant
and continuous. No backorders are allowed. The following data are given

Product Demand, Holding costper Setup Setup time, Production rate,

units per day  unit and day cost days units per day
1 48 0.060 800 0.50 200
2 20 0.040 500 (.25 100
3 32 0.048 1000 1.00 100

7.4

7.5"

a) Determine the independent solution and the corresponding lower bound
for the optimal costs.

b) Show that the independent solution is infeasible.

¢} Derive the common cycle solution and an upper bound for the total costs.

d) Apply Doll and Whybark’s technique. Is the solution feasible?

Demonstrate that the iterative procedure in Section 7.2.1.5 will converge.

Three products are produced in the same machine. Various data are given in
the table.

Product [ II 111
Demand per week 100 50 20
Production per week 1000 500 250
Setup time in weeks 0.8 0.4 0.1
Ordering cost 10000 10000 5000
Holding cost per unit and week 10 20 10

a) Usea cyclic schedule with a common cycle. Determine batch quantities.
b) By using the technique by Doll and Whybark the following solution has

been found:
Q[ = 460
0, =230
0;=184

" Answer and/or hint in Appendix 1.
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7.6

Does this solution reduce the costs, and in that case how much. Is the sol-
ution feasible?

A company is producing three products in the same machine. There are 250
working days in one year, and 8 working hours per day. The following data
are given:

Product  Demand, Holding costper Setup Setup time, Operation time,

units per year  unit and year cost minutes  minutes per unit
1 8000 20 120 20 5
2 12000 15 100 10 3
3 5000 30 200 30 8

7.7

7.8

7.9

7.10

7.11

7.13

7.14

7.15

Determine the best cyclic plan with a common cycle time.

Prove Proposition 7.3.

Show that the set of demand-feasible production plans is convex.

Show that the number of plans satisfying Property [ is at most 2",

Consider Example 7.1.

a) Represent the following plan for item 1: (30, 40, 55) as a convex
combination of plans satisfying Property 1. Is the solution unique?

b) Show that the plan obtained by the linear program is infeasible.

¢) Demonstrate that the optimal solution of the problem is to use the plan

(50, 0, 75) for item 1 and (20, 75, 0) for item 2.

Consider (7.42). Show that the average time in the system 7T is minimized by
choosing Q according to (7.43).

Consider the model in Section 7.3.1. Show that we, without changing the
problem, can replace the holding costs 4; by 7, = hd;, and set all demands
equal to one.

Derive the optimal continuous #; , (7.49), from (7.48).

Derive the condition (7.51).

Start with the solution obtained in Example 7.3 and check whether the

technique in Section 7.3.1.1 can improve the solution. This means that we no
longer require a powers-of-two policy.
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