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1. Introduction18

An efficient and effective supply chain is a sus-19

tainable competitive advantage for organizations and20

it can help them to overcome the turbulent envi-21

ronments and the extreme competitive pressures. A22

supply chain is a network of departments, such as sup-23

pliers, production and distribution centers involved24

all movements and storage of raw materials, work-25

in-process inventory, and finished goods from the26

supplier to the end customer [20]. Generally, the27

supply chain network design addresses to facility’s28

capacity and locations, and it determines the quantity29
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of flow between them [1]. A Closed-Loop Sup- 30

ply Chain Network Design (CLSCND) includes the 31

reverse and forward supply chain activities to max- 32

imize value creation over the entire life cycle of 33

a product by using the design, control, and oper- 34

ation of a system [5]. The forward supply chain 35

mainly includes products/raw materials moved from 36

the upstream suppliers to the downstream customers. 37

In addition, when the used/unsold products move 38

from the customer to the upstream supply chain to 39

recycle or reuses, it is called the reverse supply chain 40

[6, 9]. 41

On the other hand, given that in the real world, 42

a large number of parameters such as demands, 43

costs of facility location, manufacturing, and trans- 44

portation are quite uncertain, while the supply chain 45

design must be robust [16]. Since the closed-loop 46
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supply chain has an important role in reducing costs47

and improving service levels, many researchers have48

recently reviewed on the CLSCND problems under49

uncertainty. Generally, two categories of uncertainty50

are randomness and epistemic ones in the data [13].51

The Randomness uncertainty is used when the param-52

eters have the random nature so that they have a53

known distribution. The stochastic programming is54

the most common method to face this uncertainty. The55

Epistemic uncertainty applied, when the parameters56

are imprecise so that the decision makers are faced57

lack of knowledge. The Possibilistic Programming58

is usually used to confront this kind of uncertainty59

[12, 14, 19]. Stochastic, Fuzzy and Robust Program-60

ming are the three applied methods to deal with the61

uncertain parameters [12, 17].62

Although there are the different types of uncer-63

tainties in the supply chain, a few studies address to64

hybrid uncertainty. Recently, Keyvanshokooh et al.65

[10], proposed a hybrid robust-stochastic program-66

ming model that considers the stochastic scenarios67

for transportation costs and polyhedral uncertainty68

sets in the demand and return quantities. Also,69

Farokh et al. [4] proposed a hybrid robust fuzzy70

approach to cope with two different types of uncer-71

tainties that are the operational and disruption risks.72

They used the Credibility-Constrained Program-73

ming (CCP) approach to deal with the epistemic74

uncertainty [see 11]. In all current possibilistic pro-75

gramming approaches, the credibility measure is76

defined as the average of its possibility and neces-77

sity. Although this method is useful to prevent from78

quiet pessimistic/optimistic decisions, it forces deci-79

sion makers to adopt a moderate attitude between80

the optimistic and pessimistic ones. Recently, Xu and81

Zhou [20] introduced a new fuzzy measure, Me mea-82

sure, which can fill the gap of credibility measure. In83

this model, the decision maker can use an optimistic-84

pessimistic parameter(i.e. λ), to consider a convex85

combination of a pessimistic or optimistic spectrum.86

Actually, in the real-world decision-making process,87

the Me measure enables decision makers to consider88

a combined attitude. But the main drawback of the89

model is that must be solved twice and the model’s90

solutions are an interval value. Given the current91

literature and the mentioned gaps, a novel Robust92

Stochastic-Possibilistic Programming (RSPP) based93

on Me measure is developed for a general edible oil94

closed-loop supply chain network design problem.95

Using the proposed models, not only can we cope96

with the hybrid uncertainty of parameters (scenario-97

and fuzzy-based parameters), but also we can reply98

to the varying attitudes of the decision makers with a 99

more flexible measure (optimistic-pessimistic param- 100

eter). This model can obtain the flexible solutions so 101

that provided more information, according to the dif- 102

ferent optimistic-pessimistic attitudes of the decision 103

makers. Finally, unlike Xu’s model [20] which must 104

be solved twice, the superiority of the RSPP model 105

is that it can be solved only once. 106

The rest of the paper is organized as fol- 107

lows. In Section 2, we address to the problem 108

description and formulation. Section 3 provides a 109

novel Robust Stochastic-Possibilistic Programming 110

(RSPP) model. In Section 4, the numerical problems 111

developed to study the performance of the proposed 112

model, and then experimental results are presented. 113

Finally, Section 5 concludes this research and gives 114

some key points for future research. 115

2. Problem description and formulation 116

In this section, a multi-product and multi-period 117

closed-loop supply chain network design model is 118

proposed that operates under hybrid uncertainty. The 119

model aims to minimize supply chain cost and find 120

the best possible structure of a general edible oil 121

supply chain. The supply chain is an integrated multi- 122

echelon network and considers both forward and 123

reverse flows. The forward flows start with transport- 124

ing crude oil from suppliers to the crude oil silos. 125

According to production plans, crude oil transferred 126

to the production centers. After processing, crude oils 127

turn into edible oils including kinds of products such 128

as tins and bottles edible oils. Manufactured prod- 129

ucts ship to distribution centers and then to customer 130

zones. On the reverse flow, the unsold or outdated 131

products are sent to the collection centers. Given that 132

the collected oil can be re-usable after the chemical 133

processing in the manufacturing centers, the oils are 134

separated from their tin and plastic (pet) cans. Then 135

the oils are shipped to the manufacturing centers and 136

the tin and pet cans are transported to scrap market. 137

The main objective of the edible CLSCND prob- 138

lem is to choose the suppliers and determine the 139

location and number of the distribution centers in 140

a way to minimize the total cost under hybrid 141

uncertainty. Decision makers should choose the 142

best location among the potential facilities while 143

considering several factors simultaneously, such as 144

various capacities, geographic regions, opening cost 145

of facilities, transportation cost and most importantly, 146

demand of customers. In order to integrate tactical 147
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and strategic decisions and pay attention to a variety148

of customer needs, this model is considered multi-149

period and multi-product. Since In the real world150

decision making process, data may not be sufficient or151

available, therefore, the model is faced with param-152

eters that have an uncertain nature. In addition, in153

an edible oil supply chain, considering the price of154

crude oil is global, many factors like political issues,155

currency prices and etc., can affect the price of some156

parameters such as crude oil prices and transportation157

costs. As a result, given that our model has a long-158

term horizon, we use the possibilistic approach under159

different scenarios to deal with uncertain parameters160

[see 4, 14].161

The other main assumptions and limitations con-162

sidered in the proposed model are as follows:163

• A set of potential suppliers can supply raw mate-164

rials (crude oils and components)165

• A set of potential distribution centers, silos166

(warehouses), collection centers are considered167

with several different capacity levels.168

• Locations of the factory and customers are fixed.169

• A fixed percentage of demand in the previous170

period is considered as returned products171

• The costs of raw material, distribution, and172

collection centers are as fuzzy scenario based173

variables.174

• The fixed cost of opening the facilities are uncer-175

tain and described as fuzzy variables.176

• A predefined value is determined as an average177

scrap fraction178

The sets, parameters and variables are used to179

formulate the edible oil CLSCN are as follows:180

181

Indices:182

i Index of suppliers, (i = 1, 2, ..., I)j Index of183

manufacturing centers, (j = 1, 2, .., J)184

k Index of candidate locations for crude oil silos,185

(k = 1, 2, .., K)186

l Index of candidate locations for distribution cen-187

ters, (l = 1, 2, . . . , L)188

m Index of fixed locations of customer zones,189

(m = 1, 2, . . . , M)190

n Index of candidate locations for collection191

centers,(n = 1, 2, .., N)192

o Index of fixed locations for the scraped tin and pet193

markets,(o = 1, 2, . . . , O) r Index of raw mate-194

rial(crude oils), (r = 1, 2, ..., R)t Index of time195

periods, (t = 1, 2, ..., T )196

w Index of transportation modes, 197

(w = 1, 2, . . . , W ) 198

q Index of possible capacity levels for main DC, 199

(q = 1, 2, . . . , Q) 200

Parameters: 201

d̃m
pmts Demand of customer zone m for product p 202

at period t under scenario s 203

d̃rots′m Demand of customer zone o for raw mate- 204

rial (scrap component) r at period t under 205

scenarios 206

C̃s
rits Purchasing cost of raw material r from sup- 207

plier i at the time period t in scenario s 208

Ch
rkts Processing cost of raw material r in silo k 209

at the time period t in scenario s 210

c̃
f
pjts Unit production cost of product p in man- 211

ufacture center j at period t under scenario 212

s 213

c̃d
plts Processing cost of product unit p in distri- 214

bution center l at period t under scenario 215

s 216

c̃c
mts Processing cost of raw material unit r at col- 217

lection center n at period t under scenario 218

s 219

f̃ d
kq Fixed cost of opening distribution center l 220

with capacity level q 221

f̃ h
kq Fixed cost of warehouse (silo) k with 222

capacity level q 223

f̃ c
nq Fixed cost of opening collection center n 224

with capacity level q 225

f̃ s
r,i Fixed cost due to acquisition of raw mate- 226

rial r from supplier i (this represents the 227

cost of development of long-term partner- 228

ship with the supplier to guarantee a good 229

service level) 230

c̃ts
rikwts Transportation cost of raw material unit r 231

from supplier i to warehouse (silo) k via 232

transportation mode w at period t under 233

scenario s. 234

c̃th
rkjwts Transportation cost of raw material unit r 235

from warehouse (silo) k to production cen- 236

ter j via transportation mode w at period t 237

under scenario s. 238

c̃
tf
pjtwts Transportation cost of product unit p from 239

production center j to distribution center l 240

via transportation mode w at period t under 241

scenario s. 242

c̃td
plmwts Transportation cost of product unit p from 243

distribution center l to customer zone m 244

via transportation mode w at period t under 245

scenario s. 246
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c̃tm
pmnwts Transportation cost of product unit p from247

customer zone m to collection center n via248

transportation mode w at period t under249

scenario s250

c̃tc
mjwts Transportation cost of raw material r from251

collection center n to production center j252

via transportation mode w at period t under253

scenario s254

c̃mowts′tc Transportation cost of raw material (scrap255

component) r from collection center n to256

customer zone o via transportation mode w257

at period t under scenario s258

wrp The amount of the raw material unit r used259

in product unit p260

rpm Rate of return percentage from customer261

zone m for product unit p262

rc
rp Average of recyclable product fraction p263

used in raw material r264

c̃as
ri Maximum capacity of supplier i for raw265

material r at each period266

c̃ar
j Maximum capacity of production center j267

at each period268

c̃a
f
k Maximum capacity of filling center k at269

each period270

c̃ah
kq Maximum capacity of raw material silo k271

with capacity level q at each period272

c̃ad
lq Maximum capacity of distribution center l273

with capacity level q at each period274

c̃ac
nq Maximum capacity of collection center n275

with capacity level q at each period276

ps Probability of the occurrence of scenario s277

Variables:278

Qs
rikwts Quantity of raw material r shipped from279

supplier i to warehouse (silo) k via trans-280

portation mode w at period t under281

scenario s282

Qh
rkjwts Quantity of raw material r shipped from283

warehouse (silo) k to production center284

j via transportation mode w at period t285

under scenario s286

Q
f
pjtwts Quantity of product p shipped from prod-287

uct center j to distribution center l via288

transportation mode w at period t under289

scenario s290

Qd
plmwts Quantity of product p shipped from dis-291

tribution center l to customer zone m via292

transportation mode w at period t under293

scenario s294

Qm
pmnwts Quantity of product p shipped from cus-295

tomer zone m to collection center n via296

transportation mode w at period t under 297

scenario s 298

Qc
rnjts Quantity of raw material r shipped from 299

collection center n to production center 300

j via transportation mode w at period t 301

under scenario s 302

Qrnowts′c Quantity of raw material r shipped from 303

collection center n to customer zone o via 304

transportation mode w at period t under 305

scenario s 306

ys
ri 1 if a supplier i is selected for supplying 307

raw material r, 0 otherwise 308

yd
l,q 1 if a distribution center with capacity 309

level q is opened at location l, 0 otherwise 310

yh
k,q 1 if a warehouse with capacity level q is 311

opened at location k, 0 otherwise 312

yc
n,q 1 if a collection center with capacity level 313

q is opened at location n, 0 otherwise 314

Using the above notation, the CSCND problem can
be formulated as follows:

min z =
∑

f s
r,i.y

s
r,i +

∑ ∑ ∑
fd

l,q.y
d

l,q

+
∑ ∑ ∑

fh
k,q.y

h

k,q
+

∑ ∑ ∑
f c

n,q.y
c

n,q

+
∑ ∑ ∑ ∑

(cs
rits + c

ts
riawts).Q

s
rikwts

+
∑ ∑ ∑ ∑

(ch
rkts + cth

rkjwts).Q
h
rkjwts (1)

+
∑ ∑ ∑ ∑

(cf
pjts + c

tf
pjlwts).Q

f
pjlwts

+
∑ ∑ ∑

(cd
plts + ctd

plmwts).Q
d
plmwts

+
∑ ∑ ∑

(cc
rnts + ctc

rnjwts).Q
c
rnjts

+
∑ ∑ ∑ ∑

c′tcrnots.Q
′c
rnowts

+
∑ ∑ ∑ ∑

ctm
pmnwts.Q

m
pmnwts

s.t.

315

∑
k

∑
w

Qs
rikwts ≤ cas

ri.y
s
ri∀r, i, t, s (2)

∑
k

∑
w

∑
p

Q
f

pjlwts ≤ ca
f

j ∀p, j, t, s (3)

∑
r

∑
j

∑
w

Qh
rkjwts ≤

∑
q

cah
kq.y

h
kq∀k, t, s (4)
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∑
p

∑
m

∑
w

Qd
plmwts ≤

∑
q

cad
lq.y

d
lq∀l, t, s (5)

∑
m

∑
p

∑
w

Qm
pmnwts ≤

∑
q

cac
nq.y

c
nq∀n, t, s (6)

∑
k

Qh
rkjwts +

∑
n

Qc
rnjts =

∑
p

∑
l

wrp.Q
f

pjlts∀r, j, w, t, s

(7)

∑
k

Qh
rkjwts =

∑
k

Qs
rkjwts∀r, k, w, t, s (8)

∑
k

Q
f

pjlwts =
∑

m

Qd
plmwts∀p, l, w, t, s (9)

∑
p

∑
m

rc
rpQm

pmnwts =
∑

k

Qc
mjwts∀r, n, w, t, s (10)

∑
p

∑
m

(1 − rc
pr).Q

m
pmnwts =

∑
j

Qmowts′c∀r, n, w, t, s (11)

∑
l

∑
w

Qd
plmwts ≥ dm

pmts∀p, m, t, s (12)

∑
n

∑
w

Qmowts′c ≥ drots′m∀r, o, t, s (13)

∑
n

∑
w

Qm
pmnwts ≥dm

pmts.rpm∀p, m, t, s (14)

∑
q

yh
kq ≤ 1∀k (15)

∑
q

yd
l,q ≤ 1∀l (16)

∑
q

yc
nq ≤ 1∀n (17)

Qs
rikwts, Q

h
rkjwts, Q

f

pkts, Q
d
plmwts, Qmowts′c, Qm

pmnwts, Q
c
rnjwts ≥ 0,

(18)

ys
ri, y

d
l,q, y

d
l,q, y

h
k,q, y

c
n,q ∈ {0, 1} (19)

316

Equation (1) minimizes total cost of objective317

function including fixed cost to establish contracts318

with suppliers, fixed opening costs, transportation319

and processing costs. Constraints (2-6) are the capac- 320

ity constraints on suppliers, production,distribution, 321

and collection centers respectively. Constraints 322

(7-11) ensure the material/product flow balances at 323

each supplier, raw material silo, production center, 324

distributions and collection centers. Constraints 325

(12-13) correspond to satisfy the demands of 326

customer zones. Constraint (14) represents that the 327

returned products of all customers are collected in 328

the collection centers. Constraint (15-17) ensures 329

that just one capacity level of must be used for 330

each opened centers. Finally, the Equations (18, 19) 331

enforce the binary and non-negativity constraints on 332

the corresponding decision variables. 333

As the related literature shows, the edible oil 334

CLSCND is faced with hybrid uncertainty. A set 335

is scenario-based parameters and the other one is 336

fuzzy-based parameters. As a result, a novel robust 337

stochastic-possibilstic (RSPP) is proposed in this 338

paper to cope with the hybrid uncertain parameters. 339

Indeed, the RSPP model is a combination of three 340

approaches based on Me measure. First, possibilstic 341

programming to deal with the fuzzy-based parame- 342

ters. Second, stochastic programming to cope with 343

scenario-based parameters, and finally robust opti- 344

mization to adjust the conservatism level of output 345

results with regard to uncertainty of parameters. 346

3. Robust programming 347

As mentioned in the literature section, possibilis- 348

tic programming (PP) is used to deal with epistemic 349

parameters. One of the famous PP methods is Pos- 350

sibilistic chance-constrained programming (PCCP). 351

The PCCP can be used two different kinds of the 352

fuzzy number such as, trapezoidal and triangular 353

fuzzy numbers. Furthermore, in the PCCP model, 354

decision makers can satisfy the possibilistic chance 355

constraints by using mathematical concepts of mean 356

value and fuzzy numbers and considering the min- 357

imum confidence level (α) [see 12, 16]. The PCCP 358

model has two kinds of standards: Possibility (Pos) 359

and Necessity (Nec). Given the decision maker’s atti- 360

tude, the Pos is the maximum possiblity level of 361

occurrence of possibilistic parameters (i.e. Most opti- 362

mistic) and the Nec is the minimum possiblity level 363

[8, 11]. The main drawback of the credibility mea- 364

sure is that the decision makers should only consider 365

the midpoint of the pessimistic and optimistic spec- 366

trum. Recently, Xu and Zhou [20] introduced a new 367

fuzzy measure, Me measure, which can fill the gap of 368
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credibility measure. In this model, the decision maker369

can use an optimistic-pessimistic parameter (i.eλ)370

to consider a convex combination of a pessimistic371

or optimistic spectrum. Actually In the real-world372

decision-making process, the Me measure enables373

decision makers to consider a combined attitude [see374

12, 21]. This measure can be defined as follows:375

Me{A} = Nec{A} + λ(Pos{A} − Nec{A})376

= λ Pos{A} + (1 − λ) Nec{A} (20)377

As is clear from Equation (20), it can be concluded378

that:379

If λ = 1, then Me = Pos (i.e. DM considers the380

maximum chance for an uncertain parameter).381

If λ = 0, then Me = Nec (i.e. DM considers the382

minimum chance for an uncertain parameter).383

If λ = 0.5, then Me = Cr (i.e. DM considers the384

average chance for an uncertain parameter).385

The general measures of ξ ≤ x, ξ ≥ x are as fol-
lows:

Me{ξ̃ ≤ x} =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 if x ≤ r1

λ x−r1
r2−r1

if r1 ≤ x ≤ r2

λ if r2 ≤ x ≤ r3

λ + (1 − λ) x−r1
r2−r1

if r3 ≤ x ≤ r4

1 if x ≤ r4

(21)

Me{ξ̃ ≥ x} =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1 if x ≤ r1

λ + (1 − λ) r2−x
r2−r1

if r1 ≤ x ≤ r2

λ if r2 ≤ x ≤ r3

λ r3−x
r4−r3

if r3 ≤ x ≤ r4

0 if x ≤ r4

(22)
Also, the expected value of ξ can be defined based386

on Me measure as follows [see 21]:387

EMe
[
ξ̃
] =

∫ +∞

0
Me{ξ̃≥x}dx−

∫ 0

−∞
Me{ξ̃ ≤ x}dx388

= 1 − 2λ

2
(r1 + r2) + λ

2
(r3 + r4) (23)389

3.1. The Basic PCCP (BPCCP) model390

Here, for the convenience of work, the compact
form of the CLSCN model is used. The xs, y are
decision variables where xs corresponds to contin-
uous variables and y represent the binary variables.
A, B, N and, S are coefficient matrices and c, d,

f represent the parameters of the model. The vec-
tors c and d correspond to scenario-based parameters
which are transportation costs, manufacturing costs,
holding costs and demands, respectively. Also, the
vectors f and N indicate to fuzzy-based parameters
which represent opening cost and capacities of facil-
ities respectively.

Minz = f̃ y + c̃sxs

s.t.

Axs ≥ d̃s,

Bx = 0,

Sxs ≤ Ñy,

y ∈ {0, 1}, x ≥ 0,

(24)

Taking into account the Me measure, and accord-
ing to Pishvaee et al. [16] the Basic Stochastic-
possibilistic Programming (BSPP) model is as fol-
lows:

MinE[z] = E[f̃ ]y + E[c̃s]xs

s.t.

Me{Axs ≤ d̃s} ≥ αs,

Bx = 0,

Me{Sxs ≤ Ñy} ≥ βs

y ∈ {0, 1}, x ≥ 0

(25)

Xu and Zhou proposed two approximation models
which are called upper approximation model (UAM)
and the lower approximation model (LAM) [see 21].
These models can be defined as follows:

LAM

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Min E [z] = E
[
f̃

]
y + E [c̃s] xs

s.t.

Pos
{

Axs ≥ d̃s

}
≥ αs,

Bx = 0,

Pos
{

Sxs ≤ Ñy
}

≥ βs,

y ∈ {0, 1}, x ≥ 0,

and



U
nc

or
re

ct
ed

 A
ut

ho
r P

ro
of

E. Dehghan et al. / Novel robust fuzzy programming for closed-loop supply chain network design under hybrid uncertainty 7

UAM

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Min E [z] = E
[
f̃

]
y + E [c̃s] xs

s.t.

Nec
{

Axs ≥ d̃s

}
≥ αs,

Bx = 0,

Nec
{

Sxs ≤ Ñy
}

≥ βs,

y ∈ {0, 1}, x ≥ 0,

(26)

As can be seen from Equation (26), the proposed
model by Xu and Zhu should be solved two times (i.e.
once, UAM problem must be solved and the next time,
the LAM is solved). In fact, unlike the credibility
measures, the Me measure has piecewise functions
[see 21]. almost the same as the credibility measure
[22], the model is as follows:

LAM

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Min E [z] = E
[
f̃

]
y + E [c̃s] xs

s.t.

Axs ≥ (1 − αs)d1s + αsd2s,

Bx = 0,

Sxs ≤ [(1 − βs)N4 + βSN3] y,

y ∈ {0, 1}, x ≥ 0,

UAM

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Min E [z] = E
[
f̃

]
y + E [c̃s] xs

s.t.

Axs ≥ (1 − αs)d3s + αsd4s,

Bx = 0,

Sxs ≤ [(1 − βs)N2 + βSN1] y,

y ∈ {0, 1}, x ≥ 0,

(27)

3.2. Robust stochastic-possibilistic programming391

(RSPP)392

One of the drawbacks of the BPCCP model is
that the model is not sensitive to deviations from
the optimal value in the objective function (opti-
mality robustness) and deviations from the RHS
of chance constraints (feasibility robustness) [see
2]. Thus, given the parameters of the model are
hybrid uncertainty (i.e. scenario-based and fuzzy
based parameters), a novel hybrid robust stochastic-
possibilistic programming is presented which is a
combination of robust optimization, stochastic pro-
graming and possibilistic programming based on the
Me measure. The RSPP model can be defined as
follows:

Min E [z] + γ(zmax − zmin) + ω
∑

s

ps. |E [z] − E [zs]|

+δ1

∑
S

PS

[
d4s − (αs − λ)d̃4s + (1 − αs)d3s

1 − λ

]

+δ2

∑
S

PS

[
(vs − λ)N1s + (y − vs)N2s

1 − λ
− N1s.y

]
(28)

s.t.

LAM

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Axs ≥ (1 − αs)d1s + αsd2s,

Bx = 0, &&&&

Sxs ≤ [(1 − βs)N4 + βSN3] y,

y ∈ {0, 1}, x ≥ 0,

UAM

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Axs ≥ (1 − αs)d3s + αsd4s,

Bx = 0,

Sxs ≤ [(1 − βs)N2 + βSN1] y,

y ∈ {0, 1}, x ≥ 0,

Similar to BSPP model, the first term in the objec-
tive function corresponds to expected value of z. The
second term indicates to the optimality robustness
that can be controlled through minimizing the maxi-
mum possible value (i.e.zmax) and minimum possible
value (i.e.zmin). In fact, the second term is optimal-
ity robustness under fuzzy-based parameters. We call
this term as fuzzy-based deviation from the optimal
value in the objective function (i.e. possibilistic devia-
tion) and it can be defined as Equations (29, 30). Also
γ corresponds the weight (importance) of the possi-
bilistic deviation against the other terms in objective
function. Indeed, this term (i.e.γ) minimize the max-
imum deviation from the minimum deviation [see 4,
15].

zmax = f4.y +
∑

s

ps.c4s.ys (29)

zmin = f1.y +
∑

s

ps.c1s.ys (30)

The third term addresses the scenario-based uncer-
tainties which called scenario-based deviation from
the optimal value in the objective function (i.e.
stochastic deviation). This term determines amount of
violation of the expected value of objective function
(E[z]) from the expected value of objective function
under each scenario (E[zs]) and it can be defined
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as Equation (31). In fact, the third term shows that
there is a deviation between optimality robustness
under fuzzy-based parameters and optimality robust-
ness under scenario-based parameters which should
be controlled. Also ω corresponds the weight (impor-
tance) of the stochastic deviation against the other
terms in the objective function.

E[zs] =
[

1 − λ

2
(f1 + f2) + λ

2 (f1 + f2)

]
.y

+
[

1 − λ

2
(c1s + c2s) + λ

2 (c3s + c4s)

]
xs

(31)

In addition, the fourth and fifth terms in the objec-393

tive function determine the feasibility robustness in394

which δ1, δ2 are the penalty rates for violating of the395

RHS of chance constraints. As can be seen in Equa-396

tion (31), the third term denotes an absolute term that397

can be linearized using the approach proposed by Yu398

[21]. According to this approach, one additional vari-399

able θs along with a constraint is added to the problem.400

Furthermore, since N (i.e. Technological coefficient401

matrix) is an uncertain parameter, then the RSPP402

model would be a non-linear mathematical program-403

ming. Therefore, one additional variable vs = βs.y404

can be defined to formulate the linear equivalent of405

the model that is defined as Equation (32). Also, the406

parameter M is a sufficient large number. Finally,407

three constraints are added to the model to control408

the auxiliary variable vector v. Infact, we will have:409

when y = 0, then v = 0; and when y =
1, then v = β

MinE[z]+γ(zmax−zmin)+ω
∑

s

ps{(E[z]−E[zs])+2θs}

+δ1

∑
s

Ps

[
d4s − (αs − λ)d̃4s + (1 − αs)d3s

1 − λ

]
+

+δ2

∑
s

Ps

[
(vs − λ)N1s + (y − vs)N2s

1 − λ
N1s.y

]

LAM

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Axs ≥ (1 − αs)d1s + αsd2s,

Bx = 0, &&&&&(31)

Sxs ≤ [(1 − βs)N4 + βSN3] y,

vs ≤ M.y

vs ≥ M.(y − 1) + βs

vs ≤ βs

y ∈ {0, 1}, x ≥ 0

(31)

UAM

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Axs ≥ (1 − αs)d3s + αsd4s,

Bx = 0,

Sxs ≤ [(1 − βs)N2 + βSN1] y,

vs ≤ M.y

vs ≥ M.(y − 1) + βs

vs ≤ βs

y ∈ {0, 1}, x ≥ 0,

4. Implementation and evaluation 410

In this section, In order to evaluate the use- 411

fulness and performance of the proposed models, 412

several numerical experiments are implemented and 413

the related results are reported in this section. In this 414

study, the general edible oil CLSCN design problem 415

has four potential locations for distribution centers 416

and silos, as well as three potential locations for 417

recovery center. Moreover, there are three capacity 418

level including 5000, 10,000 and 15,000 tons for each 419

potential locations. Furthermore, two types of sup- 420

pliers were considered: (1) Suppliers of the crude oil 421

(such as, Palm and Colsa) located in different part of 422

the world. (2) Suppliers of the components (such as, 423

tin sheets and Plastic bottle preform). Supplied crude 424

oils are transported by ships and are unloaded at the 425

crude oils warehouses (silos), and then by trucks or 426

trains are transported to crude oil silos. Then crude 427

oils are transported by trucks or trains to manufacture 428

centers. Also, purchased components (tin sheets and 429

plastic cans or preform) are transported by trucks to 430

manufacture center. Generally, three kinds of vehi- 431

cles are considered include: ships, trucks and trains. 432

Since the proposed model is multi-product and multi- 433

period, and different scenarios (4 scenarios), as well 434

as due to space limitation, without losing generality of 435

the proposed multi-product model, in this paper the 436

production-distribution network of the single prod- 437

uct is chosen. Also, the number of customer zone is 438

considered ten. Yearly demands have a uniform distri- 439

bution and each period of time indicates three months 440

of the planning horizon. 441

As shown in Table 1, four scenarios are considered 442

corresponding to low, normal, high, and very high 443

situations with unequal probabilities. Then, for each 444

scenario, fuzzy parameters are generated. To gener- 445

ate the trapezoidal fuzzy parameters, four prominent 446

points, i.e., the most likely (cm = c2, c3), the most 447
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Table 1
The Random values of fuzzy scenarios based parameters in the test instance

Scenarios
Parameters

Low Normal High Very high

ps 0.2 0.25 0.25 0.3

d̃m
pmts U (30,100) U (80,150) U (130,200) U (180,250)

d̃′mrots U (20,40) U (40,60) U (60,80) U (80,100)

ch
rkts

U (400,500) U(450,550) U(550,650) U (650,750)

c̃s
rits U (500,600) U (600,700) U (700,800) U (800,900)

c̃
f

pjts U (2000,2500) U(2500,3000) U(3000,3500) U(3500,4000)

c̃d
plts

U (800,1200) U(1000,1400) U(1200,1600) U(1400,1800)

c̃c
rnts U (800,1000) U(1000,1200) U(1200,1400) U(1400,1600)

c̃ts
rikwts

U (800,1050) U(1000,1250) U(1100,1350) U(1200,1450)

c̃th
rkjwts

U (350,450) U (400,500) U (450,550) U (500,600)

c̃
tf

klts
U (350,450) U (400,500) U (450,550) U (500,600)

c̃td
plmwts

U (500,700) U (600,800) U (700,900) U (800,1000)

c̃tm
pmnwts U (450,650) U (600,800) U (650,850) U (750,950)

c̃tc
rnjwts U (350,450) U (400,500) U (450,550) U (500,600)

c̃nots′tn U (150,250) U (200,300) U (250,350) U (300,400)

Table 2
Random data for fuzzy parameters in the test instance

Parameters The most parameters The most
likely values likely values

f̃ d
lq

U(120000,140000) c̃a
s

ri U (1000,2000)

f̃ h
kq

U (150000,200000) c̃a
h

j U (1000,1400)

f̃ c
nq U (100000,150000) c̃a

f

k U (500,700)

f̃ s
ri U (30000,50000) c̃a

d

l U (200,300)

wrp U (0,2) c̃a
c

n U (200,350)

rpm U (0.2,0.4) rc
rp U (0.1,0.25)

pessimistic (cp = c1) and the most optimistic values448

(c◦ = c4) are estimated for each imprecise param-449

eter [see 14]. First, the most likely (cm) value of450

each parameter is generated randomly using the451

uniform distributions. Then, without loss of gen-452

erality two random numbers (r1, r2) are generated453

between 0.2 and 0.5using uniform distribution, and454

the most pessimistic (cp) and optimistic (c◦) val-455

ues of a fuzzy numberare calculated as follows:456

c◦=(1 + r1).cm, cp = (1 − r2) .cm. All parameters are457

generated randomly according to the uniform distri-458

butions specified in Table 1 and 2. The instances are459

solved by GAMS 24.8 using CPLEX solver.460

4.1. Robustness analysis461

In order to evaluate the performance of the462

proposed model several sensitivity analyses are per-463

formed on the coefficients of scenario deviations and 464

possibilistic deviations. In fact, optimality robustness 465

and feasibility robustness of the RSPP model are eval- 466

uated using the change in the coefficients γ, ω, δ1, δ2 467

respectively. Figs. 2–5 show the results of the sensi- 468

tivity analysis of the second and third terms of the 469

objective function. Figs. 2–5 show the results of the 470

sensitivity analysis of the second and third terms of 471

the objective function. Fig. 2 reveals the obtained 472

result of UAM model whereas the Fig. 3 is related 473

to the LAM model. They show that when the coeffi- 474

cient of possibilistic deviation (i.e.γ) increases, the 475

optimal expected value increases and possibilistic 476

deviation decreases. Similarly, Figs. 4 and 5 demon- 477

strate the effect of changes in ω on the mean cost 478

and the Scenario deviation of the LAM and UAM 479

models, respectively. As can be seen, by increasing 480

the coefficient of scenario deviation (i.e.ω), the opti- 481

mal expected value increases and scenario deviations 482

decreases. According to the Figs. 2–5, it can be said 483

that when ω = 0/γ = 0 the model has the highest 484

values of possibilistic deviations and scenario devia- 485

tion. As a result, decision makers can be faced with 486

a high risk. 487

4.2. Comparative analysis 488

As mentioned earlier, a robust stochastic- 489

possibilistic programming (RSPP) is a combination 490

of robust optimization, possibilistic programming 491
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Fig. 1. the structure of the edible oil closed-loop supply chain network.

Fig. 2. The effect of changes in γ on the mean cost and the possi-
bilistic deviation of the LAM model.

Fig. 3. The effect of changes in γ on the mean cost and the possi-
bilistic deviation of the UAM model.

Fig. 4. The effect of changes in ω on the mean cost and the Scenario
deviation of the LAM model.

Fig. 5. The effect of changes in ω on the mean cost and the Scenario
deviation of the UAM model.
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and stochastic programming based on Me mea-492

sure. This method is more flexible than credibility493

measure and helps decision makers to consider a494

convex combination of the extreme attitudes using495

an optimistic-pessimistic parameter. Using the pro-496

posed model, not only can we cope with the hybrid497

uncertainty of parameters (scenario-based and fuzzy-498

based parameters), but also we can reply to the499

varying attitudes of the decision makers with a more500

flexible measure (optimistic-pessimistic parameter).501

The RSPP model can obtain flexible solutions which502

can provide more information according to differ-503

ent optimistic-pessimistic attitudes of the decision504

makers. Here, a sensitivity analysis is performed505

on optimistic-pessimistic attitudes (λ) and the confi-506

dence levels (α, β). The obtained results (i.e. Table 3)507

represent differences between different optimistic-508

pessimistic attitudes and the different confidence509

levels.510

We assume that α, β have the same value and we511

change the values of optimistic-pessimistic attitudes.512

We assume thatλhas the same value and we change513

the values of α, β.514

The following Table 1 shows the optimal value515

of the RSPP model for both of the UAM and LAM516

models by changing the parameters (i.e.α, β and λ517

According to Table 3, the RSPP model provides518

interval solution that the obtained result of the UAM519

and LAM arethe upper bond and lower bond of the520

model, respectively. When α, β has the same value,521

by increasing the values of λ, the optimal value of the522

objective function (Z∗) gets worse (i.e. Z∗ increases),523

and vice versa. Indeed, we could say that: When the524

objective function is Minimization, λ is a pessimistic525

parameter, and when the objective function is Maxi-526

mization, λ is an optimistic parameter. Also, Table 3527

shows that under the same optimistic-pessimistic528

parameter when the α, βincreases, the Z∗ increases.529

In fact, whenhas the same value, by increasing α, β530

the feasible region shrinks, and we will have worse531

solution and on the contrary, when the α, β decrease,532

due to the expansion of the feasible region, we will533

find better solutions. Figs. 6 and 7 show the effect of534

changes in optimistic-pessimistic parameter and con-535

fidence levels on the objective function, respectively.536

Given the Table 3, in the similar hybrid robust537

models including credibility measure, the decision538

maker can only consider the average risk between539

optimistic and pessimistic attitudes that is related540

to λ = 0.5. In fact, in these models, the decision541

maker can have only one choice which it can hardly542

be appropriate in the real world decision-making543

process. But in the RSPP model, all options can 544

be considered to deal with various risks in the 545

model through the optimistic-pessimistic parame- 546

ter, so the decision maker can choose the best 547

option, considering the type of attitudes and model 548

characteristics. 549

To sum up, the proposed models can cope with 550

both fuzzy and stochastic imprecise parameters, 551

simultaneously. On the other hand, this model can 552

obtain flexible solutions which can provide more 553

information to the decision maker. In fact, the opti- 554

mistic or pessimistic attitude of decision-makers 555

toward the goals of the problem determines the 556

value of λ, and their conservative level toward the 557

satisfaction of constraints specifies the value of 558

α, β. 559

Given the Table 3, in the similar hybrid robust mod- 560

els including credibility measure such as Farokh et al. 561

[4], the decision maker can only consider the aver- 562

age risk between optimistic and pessimistic attitudes 563

that is related toλ = 0.5. In fact, in these models, the 564

decision maker can have only one choice which it 565

can hardly be appropriate in the real world decision- 566

making process. But in the RSPP model, all options 567

can be considered to deal with various risks in the 568

model through the optimistic-pessimistic parameter, 569

so the decision maker can choose the best option, 570

considering the type of attitudes and model character- 571

istics. Also, in comparison with the model proposed 572

by Xu and Zhu [20], it can be said that the RSPP 573

model is only solved once, while the Xu’s model must 574

be solved twice. The UAM and LAM are the upper 575

bond and lower bond of the model, respectively. This 576

means that once for UAM, the model is solved, and 577

the upper bond of interval value is obtained. Similarly, 578

the LAM model is performed and the lower bond of 579

the solution is obtained. Therefore the model’s solu- 580

tions are an interval value. In addition, in the Xu’s 581

model, λ exists only in the objective function. Thus, 582

the impact of optimistic or pessimistic attitude of 583

decision makers is only on the optimality of the objec- 584

tive function and does not affect the feasibility of the 585

model. 586

To sum up, by using the RSPP model, we can cope 587

with both fuzzy and stochastic imprecise parame- 588

ters, simultaneously. On the other hand, this model 589

can obtain flexible solutions which can provide more 590

information to the decision maker. In fact, the opti- 591

mistic or pessimistic attitude of decision-makers 592

toward the goals of the problem determines the value 593

of λ, and their conservative level toward the satisfac- 594

tion of constraints specifies the value of α, β. 595
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Table 3
Sensitivity analysis with different parameters.

λ\α, β 0 0.2 0.4 0.6 0.8 1

0.5 [123214,130213] [130255,137654] [137295,145095] [144336,152536] [151377,159977] [158418,167418]

0.6 [123838,130836] [130914,138313] [137990,145790] [145066,153267] [152142,160744] [159218,168221]

0.7 [124839,131476] [131973,138988] [139107,146500] [146241,154012] [153375,161524] [160509,169040]

0.8 [125460,132100] [132631,139648] [139806,147198] [146985,154748] [154168,162298] [161355,169843]

0.9 [126082,133080] [133278,140685] [140492,148290] [147967,155895] [154092,163501] [162107,171106]

1 [126704,133702] [133944,141342] [141184,148982] [148424,156622] [155664,164262] [162904,171903]

Fig. 6. The effect of changes in optimistic-pessimistic parameter
(λ) on the objective function.

4.3. Simulation of the results596

In this section, the desirability and robustness of the
RSPP model are evaluated under nominal data. To do
so, 10 realizations are performed using random sets
with uniform distribution, and then the realization
model is formulated using the obtained result under
nominal data (x∗, y∗) [see 14]. The compact form of
the realization model is as follows:

min Z = f real · Y∗ + creal
s · x∗

s + δ1S1 + δ1S2

s.t.

S.X∗
s ≤ Nreal · Y∗ + S1

A · X∗
s + S2 ≥ dreal (33)

B · X∗
s = 0

S1, S2 ≥ 0.

In Equation (33), the amount of the violation of597

each constraint is shown using the new decision598

variablesS1, S2. Also, the average, the standard devi-599

ation (SD) and coefficient of variation (CV) are used600

to measure the proposed model under different real-601

izations. Table 4 shows the obtained results.602

Fig. 7. The effect of changes in confidence levels (α, β) on the
objective function.

As Table 4 shows, for a high amount of the con- 603

fidence levels (α, β = 0.9), the BSPP model has 604

the worst performance regarding the mean cost and 605

standard deviation. On the other hand, the best per- 606

formance of BSPP model is related to the low value 607

of confidence levels (α, β = 0.7). The reason is that 608

by increasing the α, β the feasible region decreases 609

and this means that decision-makers have a risk- 610

averse (i.e. fully conservative) attitude. Also, when 611

α, β = 0.7 the feasible region increases and the BSPP 612

model gets the better values. As can be seen in Table 4, 613

the obtained result from both RSPP and BSPP mod- 614

els are closed together, and they have rather a similar 615

value. 616

Finally, it should be noted that the RSPP model 617

always has lower mean costs and standard deviation 618

of costs with regard to different realizations of uncer- 619

tain parameters. Indeed, the feasibility and optimality 620

robustness are considered by the RSPP model. Then, 621

violations of objective function and constraints are 622

efficiently controlled via applying optimality robust- 623

ness terms. Thus, it is quite justifiable to be applied 624

the RSPP model under uncertainty situation for such 625

Problem. 626
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Table 4
The performance of the proposed models under realizations.

No. of BSPP BSPP BSPP RSPP
realization α, β = 0.7 α, β = 0.8 α, β = 0.9

1 [153614,157753] [154957,161841] [162407,169285] [151098,159184]

2 [151370,159824] [158661,164351] [161284,166131] [150234,158302]

3 [150477,156275] [157382,162603] [160231,165342] [151237,157409]

4 [151017,158995] [154655,160671] [162856,167905] [149260,156473]

5 [150195,159903] [157699,163761] [160749,167055] [152713,155329]

6 [151251,157472] [156038,164527] [163550,169188] [150259,157621]

7 [154097,158602] [158075,162153] [164301,167545] [148764,158774]

8 [152654,158940] [156302,165107] [165108,170123] [149605,158442]

9 [151045,159521] [155385,164358] [162704,169827] [152298,159068]

10 [153473,157749] [159448,163722] [161242,168750] [149976,157198]

Mean [151919,158303] [156860,163309] [162443,168115] [1505444,157789]

SD [1143,1215] [1191,1339] [1350,1550] [1502,1728]

5. Conclusion627

In this paper, we addressed the gap in the area of628

closed loop supply chain network design (CLSCND)629

under hybrid uncertainty conditions. To this aim, first630

a mixed integer programming model was presented631

that minimize the objective function. Second, since632

the proposed model includes two kinds of uncertainty633

for parameters, scenario-based and fuzzy- based634

parameters, a novel robust stochastic-possibilistic635

programming (RSPP) and an efficient method based636

on the Me measure was proposed to cope with uncer-637

tain parameters. In order to evaluate the performance638

of the RSPP model, an industrial case study was639

considered. The results showed that the proposed640

model not only can control both scenario and the641

possibilistic deviation, but also it can consider a642

convex combination of the extreme attitudes and643

can provide more information according to differ-644

ent optimistic-pessimistic attitudes of the decision645

makers.646

As guidance for future research, the model647

addressed in this paper can be enhanced on the robust648

flexible programming. In addition, extending the edi-649

ble oil supply chain model to a sustainable supply650

chain by incorporating environmental and social indi-651

cators can be considered. Finally, for models with652

large dimensions, the use of heuristic models can be653

useful.654
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