
Part 2- Benchmarking functions in Python, with 

Multithreading 

Solution format: A single Python file called benchmark.py containing the solutions to 

the following three exercises. 

Exercise 4- A decorator for benchmarking 

Define a Python decorator called benchmark. When invoking a function fun decorated 

by benchmark, fun is executed possibly several times (discarding the results) and a 

small table is printed on the standard output including the average time of execution 

and the variance. 

The exact behaviour of the benchmark decorator is ruled by the following optional 

parameters: 

 warmups: The number of warm-up invokations to fun (i.e. invokations whose 

timing must be ignored) (default: warmups = 0); 

 iter: The number of times fun must be invoked and whose timing must be 

taken into account for the final metrics (default: iter = 1); 

 verbose: Whether the execution should be verbose (i.e. if it must print the 

timing of each warm-up round and invokation) or not (default verbose = 

False); 

 csv_file: A CSV file name where the benchmark information must be written. 

The header of the file will be in the form run num, is warmup, timing with the 

intuitive meaning (default csv_file = None, meaning that the benchmark 

information is only displayed on screen). 

Exercise 5 - Testing the decorator with multithreading 

Test your implementation by also evaluating the effectiveness of multhitreading in 

Python. 

Using the threading module of the Standard Library and exploiting 

the benchmark decorator, write a function test that executes a function f (passed as 

parameter) with varying numbers of iterations and degrees of parallelism. More 

preciselsy, the test first runs f 16 times on a single thread, then 8 times on two 

threads, then 4 times on 4 threads, and finally 2 times on 8 threads. The program must 

write the benchmarking information for the four scenarions in corresponding files 

named f_<numthreads>_<numiterations>. 

https://docs.python.org/3/library/threading.html


Run the program using a function that computes the n-th Fibonacci number in the 

standard, inefficent, double recursive way (choose n carefully) . 

Discuss briefly the results in a comment in the Python file. 

 


