
Part 1 - A Map-Reduce framework exploiting the Java 

Stream API 

The Map-Reduce paradigm is widely used for processing huge amounts of data in a 

parallel and distributed setting. In this assigment, students are required to implement a 

simple software framework providing the functionalities of Map-Reduce, but ignoring 

the aspects of parallelism and distribution. As a proof of concept, two simple working 

instances of the framework should be implemented as well. 

For an introduction to the Map-Reduce framework see the paper MapReduce: 

Simplified Data Processing on Large Clusters. For a presentation of Map-Reduce as 

Software Framework, identifying the hot spots, 

see https://en.wikipedia.org/wiki/MapReduce#Dataflow (since we ignore the 

distribution aspects, you can ignore the Partition function.) 

Solution format: An archive MapReduce-<yourSurname>.zip containing the Java files 

implementing Exercises 1, 2, and (optionally) 3. If you use NetBeans, please send in 

the archive the entire project. 

Exercise 1 - The framework 

Following the guidelines presented in the lesson of October 23, 2020 

(see http://pages.di.unipi.it/corradini/Didattica/AP-20/index.html#framework), and 

more specifically the Template Method design pattern, implement in Java a Map-

Reduce software framework providing the functionalites described in the above 

documentation and respecting the following constraints: 

1. For key/value pairs, the framework must use the attached class Pair.java (you 

can change its package, but nothing else). 

2. The hot spots of the framework are the 

methods read, map, compare, reduce and write. 

3. The framework must use, when possible, the Stream API. For 

example, map takes a stream of key-value pairs as argument and returns a 

stream of key-value pairs (types of argument and result may differ, of course). 

Exercise 2- Counting words 

By instantiating the framework, implement a program that counts the occurrences of 

words of length greater than 3 in a given set of documents, respecting the following 

constraints: 

https://pages.di.unipi.it/corradini/Didattica/AP-20/PROG-ASS/02/mapreduce-osdi04.pdf
https://pages.di.unipi.it/corradini/Didattica/AP-20/PROG-ASS/02/mapreduce-osdi04.pdf
https://en.wikipedia.org/wiki/MapReduce#Dataflow
http://pages.di.unipi.it/corradini/Didattica/AP-20/index.html#framework
https://pages.di.unipi.it/corradini/Didattica/AP-20/PROG-ASS/02/Pair.java


1. The program should ask the user for the absolute path of the directory where 

documents are stored. Only files ending in .txt should be considered. 

2. The read function must return a stream of pairs (fileName, contents), 

where filename is the name of the text file and contents is a list of strings, one 

for each line of the file. For the read function you can exploit the enclosed 

class Reader.java in the way you prefer. 

3. The map function must take as input the output of read and must return a stream 

of pairs containing, for each word (of length greater than 3) in a line, the 

pair (w, k) where k is the number of occurrences of w in that line. 

4. The compare function should compare strings according to the standard 

alphanumeric ordering. (The result should adhere to the standard Java 

conventions, see the compareTo method of interface Comparable.) 

5. The reduce function takes as input a stream of pairs (w, lst) where w is a string 

and lst is a list of integers. It returns a corresponding stream of pairs (w, 

sum) where sum is the sum of the integers in lst. 

6. The write function takes as input the output of reduce and writes the stream in 

a CSV (Comma Separated Value) file, one pair per line, in alphanumeric 

ordering. For the write function you can exploit the enclosed 

class Writer.java in the way you prefer. 

For testing the program you can use the enclosed archive Books.zip which contains 

parts of some famous books as downloaded from the pages of the Gutenberg Project. 

(before the site became inaccessible from Italy, see Raffaele Angius, Perché il 

Progetto Gutenberg sarà sotto sequestro per sempre). 

Exercise 3 - [Optional] Producing an Inverted Index 

By instantiating the framework, implement a program that generates an Inverted 

Index (for words of length greater than 3). That is, given as input the absolute path of 

a directory, the program prints in a CSV file for each word w (of length greater than 3) 

appearing in the .txt documents of the directory, a line w, filename, 

line if w appears in line number line of file filename. The lines should be sorted in 

the natural way. 

 

https://pages.di.unipi.it/corradini/Didattica/AP-20/PROG-ASS/02/Reader.java
https://docs.oracle.com/javase/8/docs/api/java/lang/Comparable.html
https://pages.di.unipi.it/corradini/Didattica/AP-20/PROG-ASS/02/Writer.java
https://pages.di.unipi.it/corradini/Didattica/AP-20/PROG-ASS/02/Books.zip
https://www.gutenberg.org/
https://www.wired.it/internet/web/2020/06/30/progetto-gutenberg-sequestro/
https://www.wired.it/internet/web/2020/06/30/progetto-gutenberg-sequestro/

